Cambridge International A Level

MATHEMATICS	$\mathbf{9 7 0 9 / 3 2}$
Paper 3 Pure Mathematics	March 2020
MARK SCHEME	

MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions)

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	Make a recognisable sketch graph of $y=\|x-2\|$	B1	
		1	
1(b)	Find x-coordinate of intersection with $y=3 x-4$	M1	
	$\text { Obtain } x=\frac{3}{2}$	A1	
	State final answer $x>\frac{3}{2}$ only	A1	
	Alternative method for question 1(b)		
	Solve the linear inequality $3 x-4>2-x$, or corresponding equation	M1	
	Obtain critical value $x=\frac{3}{2}$	A1	
	State final answer $x>\frac{3}{2}$ only	A1	
	Alternative method for question 1(b)		
	Solve the quadratic inequality $(x-2)^{2}<(3 x-4)^{2}$, or corresponding equation	M1	
	Obtain critical value $x=\frac{3}{2}$	A1	
	State final answer $x>\frac{3}{2}$ only	A1	
		3	

Question	Answer	Marks	Guidance
2	Use law of logarithm of a power and sum and remove logarithms	M1	
	Obtain a correct equation in any form, e.g. $3(2 x+5)=(x+2)^{2}$	A1	
	Use correct method to solve a 3-term quadratic, obtaining at least one root	M1	
	Obtain final answer $x=1+2 \sqrt{3}$ or $1+\sqrt{12}$ only	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
3(a)	Sketch the graph $y=\sec x$	M1	
	Sketch the graph $y=2-\frac{1}{2} x$, and justify the given statement	A1	
		2	
3(b)	Calculate the values of a relevant expression or pair of expressions at $x=0.8$ and $x=1$	M1	
	Complete the argument correctly with correct calculated values	A1	
		2	
3(c)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 0.88	A1	
	Show sufficient iterations to 4 d.p. to justify 0.88 to 2 d.p., or show there is a sign change in the interval $(0.875,0.885)$	A1	
		3	

Question	Answer	Marks	Guidance
4	Integrate by parts and reach $a x \tan x+b \int \tan x \mathrm{~d} x$	$\mathbf{M 1}^{*}$	
	Obtain $x \tan x-\int \tan x \mathrm{~d} x$	A1	
	Complete the integration, obtaining a term $\pm \ln \cos x$, or equivalent	M1	
	Obtain integral $x \tan x+\ln \cos x$, or equivalent	A1	DM1
	Substitute limits correctly, having integrated twice	M1	
	Use a law of logarithms	A1	
	Obtain answer $\frac{5}{18} \sqrt{3} \pi-\frac{1}{2} \ln 3$, or exact simplified equivalent	$\mathbf{7}$	

Question	Answer	Marks	Guidance
$5(\mathrm{a})$	Express LHS correctly as a single fraction	B1	
	Use $\cos (A \pm B)$ formula to simplify the numerator	M1	
	Use $\sin 2 A$ formula to simplify the denominator	M1	
	Obtain the given result.	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$5(\mathrm{~b})$	Obtain an equation in $\tan 2 x$ and use correct method to solve for x	$\mathbf{M 1}$	
	Obtain answer, e.g. 0.232	$\mathbf{A 1}$	
	Obtain second answer, e.g. 1.80	$\mathbf{A 1}$	Ignore answers outside the given interval.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(a)	Separate variables correctly and attempt integration of at least one side	B1	
	Obtain term of the form $a \tan ^{-1}(2 y)$	M1	
	Obtain term $\frac{1}{2} \tan ^{-1}(2 y)$	A1	
	Obtain term $-\mathrm{e}^{-x}$	B1	
	Use $x=1, y=0$ to evaluate a constant or as limits in a solution containing terms of the form $a \tan ^{-1}(b y)$ and $c \mathrm{e}^{ \pm x}$	M1	
	Obtain correct answer in any form	A1	
	Obtain final answer $y=\frac{1}{2} \tan \left(2 \mathrm{e}^{-1}-2 \mathrm{e}^{-x}\right)$, or equivalent	A1	
		7	

Question	Answer	Marks	Guidance
$6(\mathrm{~b})$	State that y approaches $\frac{1}{2} \tan \left(2 \mathrm{e}^{-1}\right)$, or equivalent	B1FT	The FT is on correct work on a solution containing e^{-x}.
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
7(a)	State or imply $3 y^{2}+6 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $3 x y^{2}$	B1	
	State or imply $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{3}	B1	
	Equate attempted derivative of LHS to zero and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1	Need to see $\frac{\mathrm{d} y}{\mathrm{~d} x}$ factorised out prior to $A G$
	Obtain the given answer correctly	A1	AG
		4	
7(b)	Equate denominator to zero	*M1	
	Obtain $y=2 x$, or equivalent	A1	
	Obtain an equation in x or y	DM1	
	Obtain the point (1, 2)	A1	
	State the point $(\sqrt[3]{5}, 0)$	B1	Alternatively (1.71, 0).
		5	

Question	Answer	Marks	Guidance
8(a)	Obtain $\overrightarrow{O M}=2 \mathbf{i}+\mathbf{j}$	B1	
	Use a correct method to find $\overrightarrow{M N}$	M1	
	Obtain $\overrightarrow{M N}=-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$	A1	
		3	
8(b)	Use a correct method to form an equation for $M N$	M1	
	Obtain $\mathbf{r}=2 \mathbf{i}+\mathbf{j}+\lambda(-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k})$, or equivalent	A1	
		2	
8(c)	Find $\overrightarrow{D P}$ for a point P on $M N$ with parameter λ, e.g. $(2-\lambda, 1+2 \lambda,-2+2 \lambda)$	B1	
	Equate scalar product of $\overrightarrow{D P}$ and a direction vector for $M N$ to zero and solve for λ	M1	
	Obtain $\lambda=\frac{4}{9}$	A1	
	State that the position vector of P is $\frac{14}{9} \mathbf{i}+\frac{17}{9} \mathbf{j}+\frac{8}{9} \mathbf{k}$	A1	
		4	

Question	Answer	Marks	Guidance
9(a)	State or imply the form $\frac{A}{1+2 x}+\frac{B}{1-2 x}+\frac{C}{2+x}$	B1	
	Use a correct method for finding a constant	M1	
	Obtain one of $A=-2, B=1$ and $C=4$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	
		5	
9(b)	Use correct method to find the first two terms of the expansion of $(1+2 x)^{-1}$, $(1-2 x)^{-1},(2+x)^{-1}$ or $\left(1+\frac{1}{2} x\right)^{-1}$	M1	
	Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction		The FT is on A, B and C.
	Obtain final answer $1+5 x-\frac{7}{2} x^{2}$	A1	
		5	

Question	Answer	Marks	Guidance
10(a)	Solve for v or w	M1	
	Use $\mathrm{i}^{2}=-1$	M1	
	Obtain $v=-\frac{2 \mathrm{i}}{1+\mathrm{i}}$ or $w=\frac{5+7 \mathrm{i}}{-1+\mathrm{i}}$	A1	
	Multiply numerator and denominator by the conjugate of the denominator	M1	
	Obtain $v=-1-\mathrm{i}$	A1	
	Obtain $w=1-6 \mathrm{i}$	A1	
		6	
10(b)(i)	Show a circle with centre $2+3 \mathrm{i}$	B1	
	Show a circle with radius 1 and centre not at the origin	B1	
		2	
10(b)(ii)	Carry out a complete method for finding the least value of $\arg z$	M1	
	Obtain answer 40.2° or 0.702 radians	A1	
		2	

Cambridge International A Level

MATHEMATICS	$9709 / 32$
Paper 3 Pure Mathematics 3	March 2021
MARK SCHEME	

MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working

SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	Guidance
1	Use law of the logarithm of a product or power	M1	
	Obtain a correct equation free of logarithms, e.g. $3\left(x^{3}-3\right)=x^{3}$	A1	
	Obtain $x=1.65$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	Substitute $x=-2$, equate result to zero and obtain a correct equation, e.g. $-8 a+20+8+b=0$	$\mathbf{B 1}$	
	Substitute $x=-1$ and equate result to 2	M1	
	Obtain a correct equation, e.g. $-a+5+4+b=2$	$\mathbf{A 1}$	
	Solve for a or for b	M1	
	Obtain $a=3$ and $b=-4$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
3	Use correct trig formulae to obtain an equation in $\tan x$	*M1	
	Using $\tan 45^{\circ}=1$, obtain a horizontal equation in $\tan x$ in any form	DM1	
	Reduce the equation to $\tan ^{2} x+\tan x-1=0$, or 3-term equivalent	A1	
	Solve a 3-term quadratic in $\tan x$, for x	M1	
	Obtain answer, e.g. $x=31.7^{\circ}$	A1	
	Obtain second answer, e.g. $x=121.7^{\circ}$, and no other in the interval	A1	Ignore answers outside the given interval.
		6	

Question	Answer	Marks	Guidance
$4($ a)	Separate variables correctly and attempt integration of at least one side	M1	
	Obtain term $\ln y$	A1	
	Obtain term of the form $\pm \ln (1-\cos x)$	M1	
	Obtain term $\ln (1-\cos x)$	A1	
	Use $x=\pi, y=4$ to evaluate a constant, or as limits, in a solution containing terms of the form $a \ln y$ and $b \ln (1-\cos x)$	A1	OE
	Obtain final answer $y=2(1-\cos x)$	$\mathbf{6}$	

Question	Answer	Marks	Guidance
$4(\mathrm{~b})$	Show a correct graph for $0<x<2 \pi$ with the maximum at $x=\pi$	B1 FT	The FT is for graphs of the form $y=a(1-\cos x)$, where a is positive.
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
5(a)	State $R=\sqrt{11}$	B1	
	Use trig formulae to find α	M1	
	Obtain $\alpha=37.09^{\circ}$	A1	
		3	
5(b)	Evaluate $\sin ^{-1}\left(\frac{1}{\sqrt{11}}\right)$ to at least $2 \mathrm{dp}\left(17.5484^{\circ}\right)$	B1 FT	The FT is on R.
	Use correct method to find a value of θ in the interval	M1	
	Obtain answer, e.g. 62.7°	A1	
	Use a correct method to obtain a second answer	M1	
	Obtain second answer, e.g. 170.2°, and no other in the interval	A1	Ignore answers outside the given interval.
		5	

PUBLISHED

Question	Answer	Marks	Guidance
6(a)	Carry out a relevant method to determine constants A and B such that $\frac{5 a}{(2 x-a)(3 a-x)}=\frac{A}{2 x-a}+\frac{B}{3 a-x}$	M1	
	Obtain $A=2$	A1	
	Obtain $B=1$	A1	
		3	
6(b)	Integrate and obtain terms $\ln (2 x-a)-\ln (3 a-x)$	$\begin{aligned} & \text { B1 FT } \\ & \text { B1 FT } \end{aligned}$	The FT is on the values of A and B.
	Substitute limits correctly in a solution containing terms of the form $b \ln (2 x-a)$ and $c \ln (3 a-x)$, where $b c \neq 0$	M1	
	Obtain the given answer showing full and correct working	A1	
		4	

Question	Answer	Marks	Guidance
7(a)	Express general point of a line in component form, e.g. $(1+2 s, 3-s, 2+3 s) \text { or }(2+t, 1-t, 4+4 t)$	B1	
	Equate at least two pairs of components and solve for s or for t	M1	
	Obtain correct answer for s or for t (possible answers are $-1,6, \frac{2}{5}$ for s and $-3,4,-\frac{1}{5}$ for t)	A1	
	Verify that all three component equations are not satisfied	A1	
	Show that the lines are not parallel and are thus skew	A1	
		5	
7(b)	Carry out correct process for evaluating the scalar product of the direction vectors	M1	
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result	M1	
	Obtain answer 19.1° or 0.333 radians	A1	
		3	

Question	Answer	Marks	Guidance
8(a)	Multiply numerator and denominator by 3 - i	M1	OE
	Obtain numerator $-10+10 \mathrm{i}$ or denominator 10	A1	
	Obtain final answer - $1+\mathrm{i}$	A1	
		3	
8(b)	State or imply $r=\sqrt{2}$	B1 FT	
	State or imply that $\theta=\frac{3}{4} \pi$	B1 FT	
		2	
8(c)	State that $O A$ and $B C$ are parallel	B1	
	State that $B C=2 O A$	B1	
		2	

Question	Answer	Marks	Guidance
8(d)	Use angle $A O B=\arg u-\arg v=\arg \frac{u}{v}$	M1	
	Obtain the given answer	A1	
	Alternative method for question 8(d)		
	Obtain $\tan A O B$ from gradients of $O A$ and $O B$ and the $\tan (A \pm B)$ formula	M1	
	Obtain the given answer	A1	
	Alternative method for question 8(d)		
	Obtain $\cos A O B$ by using the cosine rule or a scalar product	M1	
	Obtain the given answer	A1	
		2	

Question	Answer	Marks	Guidance
9(a)	Calculate the values of a relevant expression or pair of expressions at $x=1$ and $x=1.5$	M1	
	Complete the argument correctly with correct calculated values	A1	
		2	
9(b)	Use the iterative formula $x_{n+1}=\frac{\mathrm{e}^{2 x_{n}}+1}{\mathrm{e}^{2 x_{n}}-1}$, or equivalent, correctly at least once	M1	
	Obtain final answer 1.20	A1	
	Show sufficient iterations to 4 dp to justify 1.20 to 2 dp , or show there is a sign change in the interval $(1.195,1.205)$	A1	
		3	

PUBLISHED

Question	Answer	Marks	Guidance
9(c)	Use quotient rule	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative to - 8 and obtain a quadratic in $\mathrm{e}^{2 x}$	M1	
	Obtain $2\left(\mathrm{e}^{2 x}\right)^{2}-5 \mathrm{e}^{2 x}+2=0$	A1	OE
	Solve a 3-term quadratic in $\mathrm{e}^{2 x}$ for x	M1	
	Obtain answer $x=\frac{1}{2} \ln 2$, or exact equivalent, only	A1	
	Alternative method for question 9(c)		
	Use quotient rule	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative to -8 , take square roots and obtain a quadratic in e^{x}	M1	
	Obtain $\sqrt{2} \mathrm{e}^{2 x}-\mathrm{e}^{x}-\sqrt{2}=0$	A1	OE
	Solve a 3-term quadratic in e^{x} for x	M1	
	Obtain answer $x=\frac{1}{2} \ln 2$, or exact equivalent, only	A1	
		6	

Question	Answer	Marks	Guidance
10(a)	State or imply $\mathrm{d} u=\cos x \mathrm{~d} x$	B1	
	Using double angle formula for $\sin 2 x$ and Pythagoras, express integral in terms of u and $\mathrm{d} u$.	M1	
	Obtain integral $\int 2\left(u-u^{3}\right) \mathrm{d} u$	A1	OE
	Use limits $u=0$ and $u=1$ in an integral of the form $a u^{2}+b u^{4}$, where $a b \neq 0$	M1	$a+b \text { or } a+b-0\left(a=1 \text { and } b=-\frac{1}{2}\right)$
	Obtain answer $\frac{1}{2}$	A1	
		5	
10(b)	Use product rule	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative to zero and use a double angle formula	*M1	
	Obtain an equation in one trig variable	DM1	
	Obtain $4 \sin ^{2} x=1,4 \cos ^{2} x=3$ or $3 \tan ^{2} x=1$	A1	
	Obtain answer $x=\frac{1}{6} \pi$	A1	
		6	

Cambridge International A Level

MATHEMATICS
9709/31
Paper 3 Pure Mathematics 3
May/June 2020
MARK SCHEME

Maximum Mark: 75
Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions)

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks
1	Use law of the logarithm of a product or power	M1
	Obtain a correct linear inequality in any form, e.g. $\ln 2+(1-2 x) \ln 3<x \ln 5$	A1
	Solve for x	M1
	Obtain $x>\frac{\ln 6}{\ln 45}$	A1
		4

Question	Answer	Marks
2(a)	State a correct unsimplified version of the x or x^{2} term of the expansion of $(2-3 x)^{-2}$ or $\left(1-\frac{3}{2} x\right)^{-2}$	M1
	State correct first term $\frac{1}{4}$	B1
	Obtain the next two terms $\frac{3}{4} x+\frac{27}{16} x^{2}$	$\mathbf{A 1}+\mathbf{A 1}$
		4
2(b)	State answer $\|x\|<\frac{2}{3}$, or equivalent	B1
		1

Question	Answer	Marks
3	Use $\tan (A \pm B)$ formula and obtain an equation in $\tan \theta$	M1
	Using $\tan 60^{\circ}=\sqrt{3}$, obtain a horizontal equation in $\tan \theta$ in any correct form	A1
	Reduce the equation to $3 \tan ^{2} \theta+4 \tan \theta-1=0$, or equivalent	A1
	Solve a 3-term quadratic for $\tan \theta$	M1
	Obtain a correct answer, e.g. 12.1°	A1
	Obtain a second correct answer, e.g. 122.9°, and no others in the given interval	A1
		6

Question	Answer	Marks
4(a)	Use product rule	M1
	Obtain derivative in any correct form e.g. $2 \mathrm{e}^{2 x}(\sin x+3 \cos x)+\mathrm{e}^{2 x}(\cos x-3 \sin x)$	A1
	Equate derivative to zero and obtain an equation in one trigonometric ratio	M1
	Obtain $x=1.43$ only	A1
		4
4(b)	Use a correct method to determine the nature of the stationary point e.g. $\begin{aligned} & x=1.42, y^{\prime}=0.06 \mathrm{e}^{2.84}>0 \\ & x=1.44, y^{\prime}=-0.07 \mathrm{e}^{2.88}<0 \end{aligned}$	M1
	Show that it is a maximum point	A1
		2

Question	Answer	Marks
5(a)	Commence division and reach quotient of the form $2 x+k$	M1
	Obtain quotient $2 x-1$	A1
	Obtain remainder 6	A1
		3
5(b)	Obtain terms $x^{2}-x$ (FT on quotient of the form $2 x+k$)	B1FT
	Obtain term of the form $a \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)$	M1
	Obtain term $\frac{6}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)$ (FT on a constant remainder)	A1FT
	Use $x=1$ and $x=3$ as limits in a solution containing a term of the form $a \tan ^{-1}(b x)$	M1
	Obtain final answer $\frac{1}{\sqrt{3}} \pi+6$, or exact equivalent	A1
		5

Question	Answer	Marks
6(a)	State or imply $A T=r \tan x$ or $B T=r \tan x$	B1
	Use correct area formula and form an equation in r and x	M1
	Rearrange in the given form	A1
		3
6(b)	Calculate the values of a relevant expression or pair of expressions at $x=1$ and $x=1.4$	M1
	Complete the argument correctly with correct calculated values	A1
		2
6(c)	Use the iterative formula correctly at least once	M1
	Obtain final answer 1.35	A1
	Show sufficient iterations to 4 d.p. to justify 1.35 to $2 \mathrm{~d} . \mathrm{p}$. or show there is a sign change in the interval (1.345, 1.355)	A1
		3

Question	Answer	Marks
7(a)	Use quotient or product rule	M1
	Obtain derivative in any correct form e.g. $\frac{-\sin x(1+\sin x)-\cos x(\cos x)}{(1+\sin x)^{2}}$	A1
	Use Pythagoras to simplify the derivative	M1
	Justify the given statement	A1
		4

Question	Answer	Marks
7(b)	State integral of the form $a \ln (1+\sin x)$	*M1
	State correct integral $\ln (1+\sin x)$	A1
	Use limits correctly	DM1
	Obtain answer $\ln \frac{4}{3}$	A1
		4
8(a)	State $\frac{\mathrm{d} y}{\mathrm{~d} x}=k \frac{y}{x \sqrt{x}}$, or equivalent	B1
	Separate variables correctly and attempt integration of at least one side	M1
	Obtain term $\ln y$, or equivalent	A1
	Obtain term $-2 k \frac{1}{\sqrt{x}}$, or equivalent	A1
	Use given coordinates to find k or a constant of integration c in a solution containing terms of the form $a \ln y$ and $\frac{b}{\sqrt{x}}$, where $a b \neq 0$	M1
	Obtain $k=1$ and $c=2$	$\mathbf{A 1}+\mathbf{A 1}$
	Obtain final answer $y=\exp \left(-\frac{2}{\sqrt{x}}+2\right)$, or equivalent	A1
		8

Question	Answer	Marks
8(b)	State that y approaches e^{2} (FT their c in part (a) of the correct form)	B1FT
		1
9(a)	State $\overrightarrow{A B}($ or $\overrightarrow{B A})$ and $\overrightarrow{B C}($ or $\overrightarrow{C B})$ in vector form	B1
	Calculate their scalar product	M1
	Show product is zero and confirm angle $A B C$ is a right angle	A1
		3
9(b)	Use correct method to calculate the lengths of $A B$ and $B C$	M1
	Show that $A B=B C$ and the triangle is isosceles	A1
		2
9(c)	State a correct equation for the line through B and C, e.g. $\mathbf{r}=\mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k})$ or $\mathbf{r}=3 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}+\mu(-2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})$	B1
	Taking a general point of $B C$ to be P, form an equation in λ by either equating the scalar product of $\overrightarrow{O P}$ and $\overrightarrow{B C}$ to zero, or applying Pythagoras to triangle $O B P$ (or $O C P$), or setting the derivative of $\|\overrightarrow{O P}\|$ to zero	M1
	Solve and obtain $\lambda=-\frac{5}{9}$	A1
	Obtain answer $\frac{1}{3} \sqrt{2}$, or equivalent	A1

Question		Answer
	Alternative method for question 9(c)	Marks
	Use a scalar product to find the projection $C N($ or $B N)$ of $O C($ or $O B)$ on $B C$	M1
	Obtain answer $C N=\frac{5}{3}\left(\right.$ or $\left.B N=\frac{14}{3}\right)$	A1
	Use Pythagoras to find $O N$	M1
	Obtain answer $\frac{1}{3} \sqrt{2}$, or equivalent	A1
		$\mathbf{4}$

Question	Answer	Marks
10(a)(i)	Multiply numerator and denominator by $a-2 \mathrm{i}$, or equivalent	M1
	Use $\mathrm{i}^{2}=-1$ at least once	A1
	Obtain answer $\frac{6}{a^{2}+4}+\frac{3 a i}{a^{2}+4}$	A1
		3
10(a)(ii)	Either state that $\arg u=-\frac{1}{3} \pi$ or express u^{*} in terms of $a(\mathrm{FT}$ on $u)$	B1
	Use correct method to form an equation in a	M1
	Obtain answer $a=-2 \sqrt{3}$	A1
		3

Question	Answer	Marks
10(b)(i)	Show the perpendicular bisector of points representing 2 i and $1+\mathrm{i}$	B1
	Show the point representing $2+\mathrm{i}$	B1
	Show a circle with radius 2 and centre $2+i$ (FT on the position of the point for $2+\mathrm{i}$)	B1FT
	Shade the correct region	B1
		4
10(b)(ii)	State or imply the critical point $2+3 \mathrm{i}$	B1
	Obtain answer 56.3° or 0.983 radians	B1
		2

Cambridge International A Level

MATHEMATICS
9709/32
Paper 3 Pure Mathematics 3
May/June 2020
MARK SCHEME

Maximum Mark: 75
Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks
1	Commence division and reach partial quotient $3 x^{2}+k x$	
	Obtain quotient $3 x^{2}+2 x-1$	M1
	Obtain remainder $2 x-5$	A1
		A1

Question	Answer	Marks
2	State or imply $2 \ln y=\ln A+k x$	B1
	Substitute values of $\ln y$ and x, or equate gradient of line to k, and solve for k	M1
	Obtain $k=0.80$	A1
	Solve for $\ln A$	M1
	Obtain $A=3.31$	A1

Alternative method for question 2

Obtain two correct equations in y and x by substituting y - and x - values in the given equation	B1
Solve for k	M1
Obtain $k=0.80$	A1
Solve for A	M1
Obtain $A=3.31$	A1
	$\mathbf{5}$

Question	Answer	Marks
3	Commence integration and reach $a x^{\frac{5}{2}} \ln x+b \int x^{\frac{5}{2}} \cdot \frac{1}{x} \mathrm{~d} x$	M1*
	Obtain $\frac{2}{5} x^{\frac{5}{2}} \ln x-\frac{2}{5} \int x^{\frac{5}{2}} \cdot \frac{1}{x} \mathrm{~d} x$	A1
	Complete the integration and obtain $\frac{2}{5} x^{\frac{5}{2}} \ln x-\frac{4}{25} x^{\frac{5}{2}}$, or equivalent	A1
	Use limits correctly, having integrated twice e.g $\frac{2}{5} \times 32 \ln 4-\frac{4}{25} \times 32-\left(\frac{2}{5} \times 0\right)+\frac{4}{25}$	DM1
	Obtain answer $\frac{128}{5} \ln 2-\frac{124}{25}$, or exact equivalent	A1
		5

Question	Answer	Marks
4	Use correct product rule	M1
	Obtain correct derivative in any form, e.g. $-\sin x \sin 2 x+2 \cos x \cos 2 x$	A1
	Use double angle formula to express derivative in terms of $\sin x$ and $\cos x$	M1
	Equate derivative to zero and obtain an equation in one trig function	M1
	Obtain $3 \sin 2 x=1$, or $3 \cos 2 x=2$ or $2 \tan 2 x=1$	A1
	Solve and obtain $x=0.615$	A1
		6

Question	Answer	Marks
5(a)	State $R=\sqrt{7}$	B1
	Use trig formulae to find α	M1
	Obtain $\alpha=57.688^{\circ}$	A1
		3
5(b)	Evaluate $\cos -1\left(\frac{1}{\sqrt{7}}\right)$ to at least 3 d.p. $\left(67.792^{\circ}\right)$ (FT is on their R)	B1 FT
	Use correct method to find a value of θ in the interval	M1
	Obtain answer, e.g. 5.1 ${ }^{\circ}$	A1
	Obtain second answer, e.g. 117.3°, only	A1
		4

6(a)	Use quotient or product rule	M1
	Obtain correct derivative in any form e.g. $\frac{\left(1+3 x^{4}\right)-x \times 12 x^{3}}{\left(1+3 x^{4}\right)^{2}}$	A1
	Equate derivative to zero and solve for x	M1
	Obtain answer 0.577	A1
		4

Question	Answer	Marks
6(b)	State or imply d $u=2 \sqrt{3} x \mathrm{~d} x$, or equivalent	B1
	Substitute for x and dx	M1
	Obtain integrand $\frac{1}{2 \sqrt{3}\left(1+u^{2}\right)}$, or equivalent	A1
	State integral of the form $a \tan ^{-1} u$ and use limits $u=0$ and $u=\sqrt{3}$ (or $x=0$ and $\left.x=1\right)$ correctly	M1
	Obtain answer $\frac{\sqrt{3}}{18} \pi$, or exact equivalent	A1
		5

Question	Answer	Marks
7	Separate variables correctly and integrate at least one side	B1
	Obtain term $\ln (y-1)$	B1
	Carry out a relevant method to determine A and B such that $\frac{1}{(x+1)(x+3)} \equiv \frac{A}{x+1}+\frac{B}{x+3}$	M1
	Obtain $A=\frac{1}{2}$ and $B=-\frac{1}{2}$	A1
	Integrate and obtain terms $\frac{1}{2} \ln (x+1)-\frac{1}{2} \ln (x+3) \frac{1}{2} \ln (x+1)-\frac{1}{2} \ln (x+3)$, or equivalent (FT is on A and B)	$\begin{array}{r} \text { A1FT } \\ +\mathbf{A 1 F T} \end{array}$
	Use $x=0, y=2$ to evaluate a constant, or as limits in a solution containing terms of the form $a \ln (y-1), b \ln (x+1)$ and $c \ln (x+3)$, where $a b c \neq 0$	M1
	Obtain correct answer in any form	A1
	Obtain final answer $y=1+\sqrt{\left(\frac{3 x+3}{x+3}\right)}$, or equivalent	A1
		9

Question	Answer	Marks
8(a)	Substitute and obtain a correct equation in x and y	B1
	Use $\mathrm{i}^{2}=-1$ and equate real and imaginary parts	M1
	Obtain two correct equations in x and y, e.g. $x-y=3$ and $3 x+y=5$	A1
	Solve and obtain answer $z=2-\mathrm{i}$	A1
		4
8(b)(i)	Show a point representing $2+2 \mathrm{i}$	B1
	Show a circle with radius 1 and centre not at the origin (FT is on the point representing the centre)	B1 FT
	Show the correct half line from 4i	B1
	Shade the correct region	B1
		4
8(b)(ii)	Carry out a complete method for finding the least value of $\operatorname{Im} z$	M1
	Obtain answer $2-\frac{1}{2} \sqrt{2}$, or exact equivalent	A1
		2

Question	Answer	Marks
9(a)	State $\cos p=\frac{k}{1+p}$	B1
	Differentiate both equations and equate derivatives at $x=p$	M1
	Obtain a correct equation in any form, e.g. $-\sin p=-\frac{k}{(1+p)^{2}}$	A1
	Eliminate k	M1
	Obtain the given answer showing sufficient working	A1
		5
9(b)	Use the iterative formula correctly at least once	M1
	Obtain final answer $p=0.568$	A1
	Show sufficient iterations to justify 0.568 to 3 d.p., or show there is a sign change in the interval $(0.5675,0.5685)$	A1
		3
9(c)	Use a correct method to find k	M1
	Obtain answer $k=1.32$	A1
		2

Question	Answer	Marks
10(a)	State that the position vector of M is $3 \mathbf{i}+\mathbf{j}$	B1
	Use a correct method to find the position vector of N	M1
	Obtain answer $\frac{10}{3} \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$	A1
	Use a correct method to form an equation for $M N$	M1
	Obtain correct answer in any form, e.g. $\mathbf{r}=3 \mathbf{i}+\mathbf{j}+\lambda\left(\frac{1}{3} \mathbf{i}+\mathbf{j}+2 \mathbf{k}\right)$	A1
		5
10(b)	State or imply $\mathbf{r}=\mu(2 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$ as equation for $O B$	B1
	Equate sufficient components of $M N$ and $O B$ and solve for λ or for μ	M1
	Obtain $\lambda=3$ or $\mu=2$ and position vector $4 \mathbf{i}+4 \mathbf{j}+6 \mathbf{k}$ for P	A1
		3
10(c)	Carry out correct process for evaluating the scalar product of direction vectors for $O P$ and $M P$, or equivalent	M1
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result	M1
	Obtain answer 21.6 ${ }^{\circ}$	A1
		3

Cambridge International A Level

MATHEMATICS

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks
1	State or imply non-modular inequality $(2 x-1)^{2}>3^{2}(x+2)^{2}$, or corresponding quadratic equation, or pair of linear equations	B1
	Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1
	Obtain critical values $x=-7$ and $x=-1$	A1
	State final answer $-7<x<-1$	A1
	Alternative method for question 1	
	Obtain critical value $x=-1$ from a graphical method, or by solving a linear equation or linear inequality	B1
	Obtain critical value $x=-7$ similarly	B2
	State final answer $-7<x<-1$ [Do not condone \leqslant for $<$ in the final answer.]	B1
		4

Question	Answer	Marks
2	Commence integration and reach $a(2-x) e^{-2 x}+b \int e^{-2 x} \mathrm{~d} x$, or equivalent	M1*
	Obtain $-\frac{1}{2}(2-x) e^{-2 x}-\frac{1}{2} \int e^{-2 x} \mathrm{~d} x$, or equivalent	A1
	Complete integration and obtain $-\frac{1}{2}(2-x) e^{-2 x}+\frac{1}{4} e^{-2 x}$, or equivalent	A1
	Use limits correctly, having integrated twice	DM1
	Obtain answer $\frac{1}{4}\left(3-e^{-2}\right)$, or exact equivalent	A1
		5

Question	Answer	Marks
3(a)	Remove logarithms correctly and state $1+\mathrm{e}^{-x}=\mathrm{e}^{-2 x}$, or equivalent	B1
	Show equation is $u^{2}+u-1=0$, where $u=\mathrm{e}^{x}$, or equivalent	B1
		2
3(b)	Solve a 3-term quadratic for u	M1
	Obtain root $\frac{1}{2}(-1+\sqrt{5})$, or decimal in [0.61, 0.62$]$	A1
	Use correct method for finding x from a positive root	M1
	Obtain answer $x=-0.481$ only	A1
		4

Question	Answer	Marks
4(a)	Use the product rule	M1
	State or imply derivative of $\tan ^{-1}\left(\frac{1}{2} x\right)$ is of the form $k /\left(4+x^{2}\right)$, where $k=2$ or 4 , or equivalent	M1
	Obtain correct derivative in any form, e.g. $\tan ^{-1}\left(\frac{1}{2} x\right)+\frac{2 x}{x^{2}+4}$, or equivalent	A1
		3
4(b)	State or imply y-coordinate is $\frac{1}{2} \pi$	B1
	Carry out a complete method for finding p, e.g. by obtaining the equation of the tangent and setting $x=0$, or by equating the gradient at $x=2$ to $\frac{\frac{1}{2} \pi-p}{2}$	M1
	Obtain answer $p=-1$	A1
		3

Question	Answer	Marks
5	Use $\tan 2 A$ formula to express RHS in terms of $\tan \theta$	M1
	Use $\tan (A \pm B)$ formula to express LHS in terms of $\tan \theta$	M1
	Using $\tan 45^{\circ}=1$, obtain a correct horizontal equation in any form	A1
	Reduce equation to $2 \tan ^{2} \theta+\tan \theta-1=0$	A1
	Solve a 3-term quadratic and find a value of θ	M1
	Obtain answer $\theta=26.6^{\circ}$ and no other	A1
		6

Question	Answer	Marks
6(a)	Sketch a relevant graph, e.g. $y=x^{5}$	B1
	Sketch a second relevant graph, e.g. $y=x+2$ and justify the given statement	B1
		2
6(b)	State a suitable equation, e.g. $x=\frac{4 x^{5}+2}{5 x^{4}-1}$	B1
	Rearrange this as $x^{5}=2+x$ or commence working vice versa	B1
		2
6(c)	Use the iterative formula correctly at least once	M1
	Obtain final answer 1.267	A1
	Show sufficient iterations to 5 d.p. to justify 1.267 to 3 d.p., or show there is a sign change in the interval (1.2665, 1.2675)	A1
		3

Question	Answer	Marks
7(a)	State or imply the form $\frac{A}{2 x-1}+\frac{B}{2 x+1}$ and use a relevant method to find A or B	M1
	Obtain $A=1, B=-1$	A1
		2
7(b)	Square the result of part (a) and substitute the fractions of part (a)	M1
	Obtain the given answer correctly	A1
		2
7(c)	Integrate and obtain $-\frac{1}{2(2 x-1)}-\frac{1}{2} \ln (2 x-1)+\frac{1}{2} \ln (2 x+1)-\frac{1}{2(2 x+1)}$, or equivalent	B3, 2, 1, 0
	Substitute limits correctly	M1
	Obtain the given answer correctly	A1
		5

Question	Answer	Marks
8(a)	State or imply $\overrightarrow{A B}$ or $\overrightarrow{A D}$ in component form	B1
	Use a correct method for finding the position vector of C	M1
	Obtain answer $4 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$, or equivalent	A1
	Using the correct process for the moduli, compare lengths of a pair of adjacent sides, e.g. $A B$ and $A D$	M1
	Show that $A B C D$ has a pair of unequal adjacent sides	A1
	Alternative method for question 8(a)	
	State or imply $\overrightarrow{A B}$ or $\overrightarrow{A D}$ in component form	B1
	Use a correct method for finding the position vector of C	M1
	Obtain answer $4 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$, or equivalent	A1
	Use the correct process to calculate the scalar product of $\overrightarrow{A C}$ and $\overrightarrow{B D}$, or equivalent	M1
	Show that the diagonals of $A B C D$ are not perpendicular	A1
		5
8(b)	Use the correct process to calculate the scalar product of a pair of relevant vectors, e.g. $\overrightarrow{A B}$ and $\overrightarrow{A D}$	M1
	Using the correct process for the moduli, divide the scalar product by the product of the moduli of the two vectors and evaluate the inverse cosine of the result	M1
	Obtain answer 100.3 ${ }^{\circ}$	A1
		3

Question	Answer	Marks
$8(\mathrm{c})$	Use a correct method to calculate the area, e.g. calculate $A B . A C \sin B A D$	M1
	Obtain answer 11.0 (FT on angle BAD)	A1 FT
		$\mathbf{2}$

Question	Answer	Marks
9(a)	Eliminate u or w and obtain an equation w or u	M1
	Obtain a quadratic in u or w, e.g. $u^{2}-2 \mathrm{i} u-6=0$ or $w^{2}+2 \mathrm{i} w-6=0$	A1
	Solve a 3-term quadratic for u or for w	M1
	Obtain answer $u=\sqrt{5}+\mathrm{i}, w=\sqrt{5}-\mathrm{i}$	A1
	Obtain answer $u=-\sqrt{5}+\mathrm{i}, w=-\sqrt{5}-\mathrm{i}$	A1
		5
9(b)	Show the point representing $2+2 \mathrm{i}$	B1
	Show a circle with centre $2+2 \mathrm{i}$ and radius 2 ($\mathbf{F T}$ is on the position of $2+2 \mathrm{i}$)	B1 FT
	Show half-line from origin at 45° to the positive x-axis	B1
	Show line for $\operatorname{Re} z=3$	B1
	Shade the correct region	B1
		5

Question	Answer	Marks
10(a)	State or imply $\frac{\mathrm{d} V}{\mathrm{~d} t}=-k \sqrt{h}$	B1
	State or imply $\frac{\mathrm{d} V}{\mathrm{~d} h}=2 \pi r h-\pi h^{2}$, or equivalent	B1
	Use $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \cdot \frac{\mathrm{~d} h}{\mathrm{~d} t}$	M1
	Obtain the given answer correctly	A1
		4
10(b)	Separate variables and attempt integration of at least one side	M1
	Obtain terms $\frac{4}{3} r h^{\frac{3}{2}}-\frac{2}{5} h^{\frac{5}{2}}$ and $-B t$	A3, 2, 1, 0
	Use $t=0, h=r$ to find a constant of integration c	M1
	Use $t=14, h=0$ to find B	M1
	Obtain correct c and B, e.g. $c=\frac{14}{15} r^{\frac{5}{2}}, B=\frac{1}{15} r^{\frac{5}{2}}$	A1
	Obtain final answer $t=14-20\left(\frac{h}{r}\right)^{\frac{3}{2}}+6\left(\frac{h}{r}\right)^{\frac{5}{2}}$, or equivalent	A1
		8

Cambridge International A Level

MATHEMATICS
 9709/31
 Paper 3 Pure Mathematics 3
 May/June 2021
 MARK SCHEME

Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions)

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	Guidance
1	State or imply non-modular inequality $2^{2}(3 x-1)^{2}<(x+1)^{2}$, or corresponding quadratic equation, or pair of linear equations	B1	
	Form and solve a 3-term quadratic, or solve two linear equations for x	M1	e.g. $35 x^{2}-26 x+3=0$
	Obtain critical values $x=\frac{3}{5}$ and $x=\frac{1}{7}$	A1	Allow 0.143 or better
	State final answer $\frac{1}{7}<x<\frac{3}{5}$	A1	Exact values required. Accept $x>\frac{1}{7}$ and $x<\frac{3}{5}$ Do not condone \leqslant for $<$ in the final answer. Fractions need not be in lowest terms.
	Alternative method for Question 1		
	Obtain critical value $x=\frac{3}{5}$ from a graphical method, or by solving a linear equation or linear inequality	B1	
	Obtain critical value $x=\frac{1}{7}$ similarly	B2	Allow 0.143 or better
	State final answer $\frac{1}{7}<x<\frac{3}{5}$	B1	OE. Exact values required. Accept $x>\frac{1}{7}$ and $x<\frac{3}{5}$ Do not condone \leqslant for $<$ in the final answer. Fractions need not be in lowest terms.
		4	

PUBLISHED

Question	Answer	Marks	Guidance
2	Reduce to a 3-term quadratic $u^{2}+6 u-1=0$ OE	B1	Allow ' $=0$ ' implied
	Solve a 3-term quadratic for u	M1	
	Obtain root $\sqrt{10}-3$	A1	
	Obtain answer $x=-1.818$ only	A1	The question asks for 3 d.p.
	Reject $-\sqrt{10}-3$ correctly	B1	e.g. by stating that $\mathrm{e}^{x}>0$ or $\ln (-10-\sqrt{3})$ is impossible Not "math error".
	Alternative method for Question 2		
	Rearrange to obtain a correct iterative formula	B1	e.g. $x_{n+1}=-\ln \left(6+\mathrm{e}^{x_{n}}\right)$
	Use the iterative process at least twice	M1	
	Obtain answer $x=-1.818$	A1	
	Show sufficient iterations to at least 4 d.p. to justify $x=-1.818$	A1	$1,-2.165 \ldots,-1.811 \ldots,-1.819 \ldots,-1.818 \ldots,-1.818 \ldots$
	Clear explanation of why there is only one real root	B1	
		5	

PUBLISHED

Question	Answer	Marks	Guidance
3(a)	Use correct trig expansions and obtain an equation in $\sin x$ and $\cos x$	*M1	
	Use correct exact trig ratios for 30° in their expansion	B1 FT	$\text { e.g. } \cos x\left(\frac{\sqrt{3}}{2}-1\right)=\sin x\left(\sqrt{3}-\frac{1}{2}\right)$
	Obtain an equation in $\tan x$	DM1	Allow if their error in line 1 was a sign error
	Obtain $\tan x=\frac{2-\sqrt{3}}{1-2 \sqrt{3}}$ from correct working	A1	AG
		4	
3(b)	Obtain answer in the given interval, e.g.173.8 ${ }^{\circ}$	B1	Accept $174^{\circ}, 354^{\circ}$ or better
	Obtain a second answer and no other in the given interval, e.g. 353.8°	B1	Ignore answers outside the given interval. Treat answers in radians (3.03 and 6.17) as a misread.
		2	

Question	Answer	Marks	
$4(\mathrm{a})$	Use correct double angle formula or t-substitution twice	M1	
	Obtain $\frac{1-\cos 2 \theta}{1+\cos 2 \theta}=\tan ^{2} \theta$ from correct working	A1	AG
		2	

Question	Answer	Marks	Guidance
4(b)	Express $\tan ^{2} \theta$ in terms of $\sec ^{2} \theta$	M1	$\left(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(\sec ^{2} \theta \pm 1\right) \mathrm{d} \theta\right)$
	Integrate and obtain terms $\tan \theta-\theta$	A1	Accept with a mixture of x and θ
	Substitute limits correctly in an integral of the form $a \tan \theta+b \theta$, where $a b \neq 0$	M1	$\left(\sqrt{3}-\frac{\pi}{3}-\frac{1}{\sqrt{3}}+\frac{\pi}{6}\right)$ Allow if trig. not substituted
	Obtain answer $\frac{2}{3} \sqrt{3}-\frac{1}{6} \pi$	A1	or equivalent exact 2-term expression
		4	

Question	Answer	Marks	Guidance
$5(\mathrm{a})$	Use quadratic formula and $\mathrm{i}^{2}=-1$	$\mathbf{M 1}$	
	Obtain answers $p \mathrm{i}+\sqrt{q-p^{2}}$ and $p \mathrm{i}-\sqrt{q-p^{2}}$	$\mathbf{A 1}$	Accept $\frac{2 p \mathrm{i} \pm \sqrt{-4 p^{2}+4 q}}{2}$ and ISW
		5(b)	State or imply that the discriminant must be negative
	State condition $q<p^{2}$	$\mathbf{2}$	
		$\mathbf{M 1}$	

Question	Answer	Marks	Guidance
5(c)	Carry out a correct method for finding a relation, e.g. use the fact that the argument of one of the roots is $(\pm) 60^{\circ}$	M1	
	State a correct relation in any form, e.g. $\frac{p}{\sqrt{q-p^{2}}}=(\pm) \sqrt{3}$	A1	
	Simplify to $q=\frac{4}{3} p^{2}$	A1	
	Alternative method for Question 5(c)		
	Carry out a correct method for finding a relation, e.g. use the fact that the sides have equal length	M1	
	State a correct relation in any form, e.g. $4\left(q-p^{2}\right)=p^{2}+q-p^{2}$	A1	
	Simplify to $q=\frac{4}{3} p^{2}$	A1	
		3	

PUBLISHED

Question	Answer	Marks	Guidance
6(a)	Use correct chain rule or correct quotient rule to differentiate x or y	M1	
	Obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{3}{2+3 t}$ or $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{2}{(2+3 t)^{2}}$	A1	OE
	$\text { Use } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$	M1	
	Obtain answer $\frac{2}{3(2+3 t)}$	A1	OE. Express as a simple fraction but not necessarily fully cancelled.
	Explain why this is always positive	A1	For correct gradient. e.g. x is only defined for $2+3 t>0$ hence gradient >0
	Alternative method for Question 6(a)		
	Form equation in x and y only	M1	
	Obtain $y=\frac{\mathrm{e}^{x}-2}{3 \mathrm{e}^{x}}\left(=\frac{1}{3}-\frac{2}{3} \mathrm{e}^{-x}\right)$	A1	OE
	Differentiate	M1	
	Obtain $y^{\prime}=\frac{2}{3} \mathrm{e}^{-x}$	A1	OE
	Explain why this is always positive	A1	
		5	

Question	Answer	Marks	Guidance
6(b)	Obtain $y=-\frac{1}{3}$ when $x=0$	B1	
	Use a correct method to form the given tangent	M1	$\left(\frac{y+\frac{1}{3}}{x}=\frac{2}{3}\right)$
	Obtain answer $3 y=2 x-1$	A1	OE
		3	

Question	Answer	Marks	
$7(\mathrm{a})$	Use correct quotient rule or correct product rule	M1	e.g. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{x} \cdot \frac{1}{1+x^{2}}-\tan ^{-1} x \cdot \frac{1}{2 \sqrt{x}}}{x}$
		Obtain correct derivative in any form	A1
	Equate derivative to zero and remove inverse tangent	M1	
	Obtain $a=\tan \left(\frac{2 a}{1+a^{2}}\right)$ from correct working	A1	AG. Accept with x in place of a.
		4	

PUBLISHED

Question	Answer	Marks	Guidance
7(b)	Calculate the value of a relevant expression or pair of expressions at $a=1.3$ and $a=1.5$	M1	Must be using radians
	Complete the argument correctly with correct calculated values	A1	e.g. $1.3<1.448, \quad 1.5>1.322(0.148,-0.178)$
		2	
7(c)	Use the iterative process $a_{n+1}=\tan \left(\frac{2 a_{n}}{1+a_{n}^{2}}\right)$ correctly at least twice	M1	
	Obtain final answer 1.39	A1	
	Show sufficient iterations to at least 4 d.p. to justify 1.39 to 2 d.p. or show there is a sign change in the interval $(1.385,1.395)$	A1	Allow recovery
		3	

Question	Answer	Marks	Guidance
8(a)	State or imply $\overrightarrow{A B}=\left(\begin{array}{c}2 \\ -1 \\ -3\end{array}\right)$	B1	OE. Allow \pm
	Use the correct process to calculate the scalar product of a pair of relevant vectors, e.g. their $\overrightarrow{A B}$ and a direction vector for l	M1	$(2+2-3=1)$
	Using the correct process for the moduli, divide the scalar product by the product of the moduli of the two vectors and evaluate the inverse cosine of the result	M1	$\cos ^{-1}\left(\frac{1}{\sqrt{6} \sqrt{14}}\right)$
	Obtain answer 83.7° or 1.46 radians	A1	Or answers rounding to 83.7° or 1.46 radians
		4	

PUBLISHED

Question	Answer	Marks	Guidance
8(b)	State or imply $\pm \overrightarrow{A P}$ and $\pm \overrightarrow{B P}$ in component form, i.e. $(1+\lambda, 1-2 \lambda, \lambda)$ and $(-1+\lambda, 2-2 \lambda, 3+\lambda)$, or equivalent	B1	
	Form an equation in λ by equating moduli or by using $\cos B A P=\cos A B P$	*M1	
	Obtain a correct equation in any form $(1+\lambda)^{2}+(1-2 \lambda)^{2}+\lambda^{2}=(\lambda-1)^{2}+(2-2 \lambda)^{2}+(\lambda+3)^{2}$	A1	$\begin{aligned} & \operatorname{Or}(1+\lambda) \sqrt{14-4 \lambda+6 \lambda^{2}}=(13-\lambda) \sqrt{2-2 \lambda+6 \lambda^{2}} \\ & \left(83 \lambda^{3}-528 \lambda^{2}+207 \lambda-162=0\right) \end{aligned}$
	Solve for λ and obtain position vector	DM1	$[\lambda=6]$
	Obtain correct position vector for P in any form, e.g. $(8,-9,7)$ or $8 \mathbf{i}-9 \mathbf{j}+7 \mathbf{k}$	A1	Accept coordinates
		5	

Question	Answer	Marks	Guidance
9(a)	Use correct product rule or correct quotient rule	M1	
	Obtain correct derivative in any form	A1	$y^{\prime}=\frac{x^{-\frac{2}{3}}}{x}-\frac{2}{3} x^{-\frac{5}{3}} \ln x$
	Equate 2 term derivative to zero and solve for x	M1	
	Obtain answer $x=\mathrm{e}^{\frac{3}{2}}$	A1	Or exact equivalent
	Obtain answer $y=\frac{3}{2 \mathrm{e}}$	A1	Or exact equivalent
		5	

PUBLISHED

Question	Answer	Marks	Guidance
$9(\mathrm{~b})$	Commence integration and reach $a x^{\frac{1}{3}} \ln x+b \int x^{\frac{1}{3}} \cdot \frac{1}{x} \mathrm{~d} x$	$*$ M1	
	Obtain $3 x^{\frac{1}{3}} \ln x-3 \int x^{\frac{1}{3}} \cdot \frac{1}{x} \mathrm{~d} x$	A1	
	Complete the integration and obtain $3 x^{\frac{1}{3}} \ln x-9 x^{\frac{1}{3}}$	A1	OE
	Use limits correctly in an expression of the form $p x^{\frac{1}{3}} \ln x+q x^{\frac{1}{3}}(p q \neq 0)$	DM1	$6 \ln 8-9 \times 2-0+9$
	Obtain $18 \ln 2-9$ from full and correct working	A1	AG need to see $\ln 8=3 \ln 2$

PUBLISHED

Question	Answer	Marks	Guidance
10	State a suitable form of partial fractions for $\frac{1}{x^{2}(1+2 x)}$	B1	e.g. $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{1+2 x}$ or $\frac{A x+B}{x^{2}}+\frac{C}{1+2 x}$
	Use a relevant method to determine a constant	M1	
	Obtain one of $A=-2, B=1$ and $C=4$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	
	Separate variables correctly and integrate at least one term	M1	
	Obtain terms $-2 \ln x-\frac{1}{x}+2 \ln (1+2 x)$ and t	B3 FT	The FT is on A, B and C. Withhold B1 for each error or omission.
	Evaluate a constant, or use limits $x=1, t=0$ in a solution containing terms t, $a \ln x$ and $b \ln (1+2 x)$, where $a b \neq 0$	M1	
	Obtain a correct expression for t in any form, e.g. $t=-\frac{1}{x}+2 \ln \left(\frac{1+2 x}{3 x}\right)+1$	A1	
		11	

Cambridge International A Level

MATHEMATICS

9709/32
Paper 3 Pure Mathematics 3
May/June 2021
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	State or imply non-modular inequality $(2 x-1)^{2}<3^{2}(x+1)^{2}$, or corresponding quadratic equation	B1	$\text { e.g. } 5 x^{2}+22 x+8=0$ Allow recovery from 'invisible brackets' on RHS
	Form and solve a 3-term quadratic in x	M1	
	Obtain critical values $x=-4$ and $x=-\frac{2}{5}$	A1	
	State final answer $x<-4, x>-\frac{2}{5}$	A1	Do not condone \leqslant for $<$, or \geqslant for $>$ in the final answer. Allow 'or' but not 'and'. $-\frac{2}{5}<x<-4 \text { scores A0. }$ Accept equivalent forms using brackets e.g. $x \in(-\infty,-4) \cup(-0.4, \infty)$
	Alternative method for Question 1		
	Obtain critical value $x=-4$ from a graphical method, or by solving a linear equation or linear inequality	B1	 Do not condone \leqslant for $<$, or \geqslant for $>$ in the final answer. Allow 'or' but not 'and'. $-\frac{2}{5}<x<-4 \text { scores A0. }$ Accept equivalent forms using brackets e.g. $x \in(-\infty,-4) \cup(-0.4, \infty)$
	Obtain critical value $x=-\frac{2}{5}$ similarly	B2	
	State final answer $x<-4, x>-\frac{2}{5}$	B1	
		4	

Question	Answer	Marks	Guidance
2	Show a circle with centre $-1+\mathrm{i}$.	B1	Need some indication of scale or a correct label. Could just be mark(s) on the axes
	Show a circle with radius 1 and centre not at the origin (or relevant part thereof).	B1	
	Show correct half line from 1(or relevant part thereof) .	B1	
	Shade the correct region on a correct diagram.	B1	
		4	N.B. If they have very different scales on their 2 axes the diagram must match their scale - the 'circle' should be an ellipse. Allow freehand diagrams with clear correct intention.

Question	Answer	Marks	Guidance
3(a)	State or imply $\ln x=\ln A-y \ln 3$	$\mathbf{B 1}$	$\left(y=-\frac{1}{\ln 3} \ln x+\frac{\ln A}{\ln 3}\right)$

PUBLISHED

Question	Answer	Marks	Guidance		
$3(\mathrm{~b})$	Substitute $\ln x=0, y=1.3$ and use correct method to solve for A	M1	$(\ln A=1.3 \ln 3)$ Follow their equation in y and $\ln x$. Must be substituting $\ln x=0$, not $x=0$. $\ln 0$ 'used' in the solution scores M0A0.		
		Abtain answer $A=4.17$ only	A1		Must be 2 d.p. as specified in question
:---					

Question	Answer	Marks	Guidance
4	Commence integration and reach $a x \tan ^{-1} \frac{1}{2} x+b \int x \frac{1}{c+x^{2}} \mathrm{~d} x$	*M1	OE. Denominator might be $1+\frac{x^{2}}{4}$ or $2+\frac{x^{2}}{2}$.
	Obtain $x \tan ^{-1}\left(\frac{1}{2} x\right)-\int x . \frac{2}{4+x^{2}} \mathrm{~d} x$	A1	OE
	Complete integration and obtain $x \tan ^{-1}\left(\frac{1}{2} x\right)-\ln \left(4+x^{2}\right)$	A1	OE e.g. with $\ln \left(1+\frac{x^{2}}{4}\right)$
	Substitute limits correctly in an expression of the form $p x \tan ^{-1} x+q \ln \left(c+x^{2}\right)$	DM1	$2 \tan ^{-1} 1-\ln 8+\ln 4$ OE
	Obtain final answer $\frac{1}{2} \pi-\ln 2$	A1	OE exact answer. Needs a value for $\tan ^{-1} 1$ and a single log term
	Alternative method for Question 4		
	Use the substitution $\theta=\tan ^{-1} \frac{x}{2}$ to obtain $\lambda \int 2 \theta \sec ^{2} \theta \mathrm{~d} \theta$ and reach $p \theta \tan \theta+q \int \tan \theta \mathrm{~d} \theta$	*M1	

PUBLISHED

Question	Answer	Marks	Guidance
4	Obtain $2 \theta \tan \theta-2 \int \tan \theta \mathrm{~d} \theta$	$\mathbf{A 1}$	OE
	Complete integration and obtain $2 \theta \tan \theta+2 \ln (\cos \theta)$	$\mathbf{A 1}$	OE
	Substitute $\operatorname{correct~limits~correctly~in~an~expression~of~the~form~}$ $r \theta \tan \theta+s \ln (\cos \theta)$	DM1	Limits should be $\frac{\pi}{4}$ and 0. Limits must be in radians.
	Obtain final answer $\frac{1}{2} \pi-\ln 2$	$\mathbf{A 1}$	OE exact answer. Need values for trig. functions and a single log term.
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
5	Square $a+\mathrm{i} b$, use $\mathrm{i}^{2}=-1$ and equate real and imaginary parts to 10 and $-4 \sqrt{6}$ respectively	M1	
	Obtain $a^{2}-b^{2}=10$ and $2 a b=-4 \sqrt{6}$	A1	Allow $2 a b i=-4 \sqrt{6 i}$
	Eliminate one unknown and find an equation in the other	M1	Must be sensible algebra e.g. use of $\sqrt{a^{2}-b^{2}}=a-b$ socres M0
	Obtain $a^{4}-10 a^{2}-24[=0]$, or $b^{4}+10 b^{2}-24[=0]$, or 3-term equivalent	A1	Or equivalent horizontal equation from correct work
	Obtain final answers $\pm(2 \sqrt{3}-\sqrt{2} \mathrm{i})$, or exact equivalents	A1	e.g. $\pm(\sqrt{12}-\sqrt{2} \mathrm{i})$ from correct work
	Alternative method for Question 5		
	Use the correct method to find the modulus and argument of \sqrt{u}	M1	
	Obtain modulus $\sqrt{14}$	A1	
	Obtain argument $\tan ^{-1} \frac{-1}{\sqrt{6}}$ using an exact method	A1	e.g. by using half angle formula which gives $2 \sqrt{6} t^{2}-10 t-2 \sqrt{6}=0$
	Convert to the required form	M1	$\pm \sqrt{14}\left(\frac{\sqrt{6}}{\sqrt{7}}-\frac{1}{\sqrt{7}} i\right)$ This mark is available if working in decimals
	Obtain answers $\pm(2 \sqrt{3}-\sqrt{2} \mathrm{i})$, or exact equivalents	A1	e.g. $\pm(\sqrt{12}-\sqrt{2} \mathrm{i})$
		5	

Question	Answer	Marks	Guidance
6(a)	Express the LHS in terms of $\cos 2 \theta$ and $\sin 2 \theta$	B1	$\text { e.g. } \frac{1}{\sin 2 \theta}-\frac{\cos 2 \theta}{\sin 2 \theta}$
	Use correct double angle formulae to express the LHS in terms of $\cos \theta$ and $\sin \theta$	M1	$\text { e.g. } \frac{1-\left(1-2 \sin ^{2} \theta\right)}{2 \sin \theta \cos \theta}$
	Obtain $\tan \theta$ from correct working	A1	AG
	Alternative method for Question 6(a)		
	Express the LHS in terms of $\sin 2 \theta$ and $\tan 2 \theta$	B1	
	Use correct double angle formulae to express the LHS in terms of $\cos \theta$ and $\sin \theta$	M1	$\text { e.g. } \frac{1}{2 \sin \theta \cos \theta}-\frac{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{2 \frac{\sin \theta}{\cos \theta}}\left(=\frac{4 \sin ^{2} \theta}{4 \sin \theta \cos \theta}\right)$
	Obtain $\tan \theta$ from correct working	A1	AG
	Alternative method for Question 6(a)		
	Express the LHS in terms of $\sin 2 \theta$ and $\tan 2 \theta$	B1	
	Use correct t substitution or rearrangement of $\sin 2 \theta$ in terms of $\sec ^{2} 2 \theta$ and $\tan \theta$ to express the LHS in terms of $\tan \theta$.	M1	$\left(\frac{\sec ^{2} \theta}{2 \tan \theta}-\frac{1-\tan ^{2} \theta}{2 \tan \theta}=\right) \frac{1+\tan ^{2}}{2 \tan }-\frac{1-\tan ^{2}}{2 \tan }$
	Obtain $\tan \theta$ from correct working	A1	AG
		3	

PUBLISHED

Question	Answer	Marks	Guidance
$6(\mathrm{~b})$	State integral of the form $\mp \ln \cos \theta$ or $\pm \ln \sec \theta$	$* \mathbf{M 1}$	$[-\ln \cos \theta]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$ OE
	Use correct limits correctly and insert exact values for the trigonometric ratios	DM1	Need to see evidence of the substitution
	Obtain a correct expression, e.g. $-\ln \frac{1}{2}+\ln \frac{1}{\sqrt{2}}$	A1	
	Obtain $\frac{1}{2} \ln 2$ from correct working	A1	AG (must see an intermediate step)
		4	

Question	Answer	Marks	Guidance
7	State equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=k \frac{y}{\sqrt{x+1}}$	B1	OE. Must be a differential equation.
	Separate variables correctly for their differential equation and integrate at least one side	*M1	$\int \frac{1}{y} \mathrm{~d} y=\int \frac{k}{\sqrt{x+1}} \mathrm{~d} x$
	Obtain $\ln y$	A1	Allow M1A1A1 if they have assumed $k=1$ or are working with an incorrect value for k
	Obtain $2[k] \sqrt{x+1}$	A1	
	Use $(0,1)$ and $(3, \mathrm{e})$ in an expression containing $\ln y$ and $\sqrt{x+1}$ and a constant of integration to determine k and/or a constant of integration c (or use $(0,1),(3, \mathrm{e})$ and (x, y) as limits on definite integrals)	DM1	If remove logs before finding the constant of integration then the constant must be of the correct form.
	Obtain $k=\frac{1}{2}$ and $c=-1$	A1	OE. $(\ln y=\sqrt{x+1}-1)$ Their value of c will depend on where c is in their equation and whether they are working with $\frac{1}{k} \ln y$. The value of k must be consistent with what they integrated.
	Obtain $y=\exp (\sqrt{x+1}-1)$	A1	NFWW, OE, ISW.
		7	

Question	Answer	Marks	Guidance
8	Use correct product (or quotient) rule	M1	At least 3 of 4 terms correct
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=-5 \mathrm{e}^{-5 x} \tan ^{2} x+2 \mathrm{e}^{-5 x} \tan x \sec ^{2} x$	A1	OE.
	Equate their derivative to zero, use $\sec ^{2} x=1+\tan ^{2} x$ and obtain an equation in $\tan x$	M1	
	Obtain $2 \tan ^{2} x-5 \tan x+2=0$	A1	Allow $2 \tan ^{3} x-5 \tan ^{2} x+2 \tan x=0$
	State answer $x=0$	B1	From correct derivative.
	Solve a 3 term quadratic in $\tan x$ and obtain a value of x	M1	Must be in radians
	Obtain answer, e.g. 0.464	A1	Must be 3 d.p. as specified in the question.
	Obtain second non-zero answer, e.g. 1.107 and no other in the given interval	A1	
	Alternative method for Question 8		
	Use correct product (or quotient) rule	M1	At least 3 of 4 terms correct
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=-5 \mathrm{e}^{-5 x} \tan ^{2} x+2 \mathrm{e}^{-5 x} \tan x \sec ^{2} x$	A1	OE
	Equate their derivative to zero and obtain an equation in $\sin x$ and $\cos x$	M1	
	Obtain $5 \cos x \sin x=2$	A1	Or simplified equivalent (i.e. cancelled)
	State answer $x=0$	B1	From correct derivative.
	Use double angle formula or square both sides and solve for x	M1	Or equivalent method. Must be in radians.
	Obtain answer, e.g. 0.464	A1	Must be 3 d.p. as specified in the question.
	Obtain second non-zero answer, e.g. 1.107 and no other in the given interval	A1	0 if both values given to 2 d.p. or >3 d.p.
		8	

Question	Answer	Marks	Guidance
9(a)	State or imply the form $\frac{A}{2+x}+\frac{B+C x}{3+x^{2}}$	B1	
	Use a correct method for finding a constant	M1	SOI
	Obtain one of $A=4, B=1$ and $C=-2$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	ISW
		5	
9(b)	Use correct method to find the first two terms of the expansion of $(2+x)^{-1}$, $\left(1+\frac{1}{2} x\right)^{-1},\left(3+x^{2}\right)^{-1}$ or $\left(1+\frac{1}{3} x^{2}\right)^{-1}$	M1	Allow unsimplified but not if still including ${ }^{n} C_{r}$
	Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction	$\begin{aligned} & \text { A1 FT } \\ & \text { A1 FT } \end{aligned}$	$\begin{aligned} & 2\left(1-\frac{1}{2} x+\left(\frac{1}{2} x\right)^{2} \cdots\right) \\ & +\frac{1}{3}(1-2 x)\left(1-\frac{1}{3} x^{2} \ldots\right) \end{aligned}$ The FT is on their A, B and C
	Multiply out, up to the terms in x^{2}, by $B+C x$, where $B C \neq 0$	M1	Allow with B and C as implied in part (b)
	Obtain final answer $\frac{7}{3}-\frac{5}{3} x+\frac{7}{18} x^{2}$	A1	Or equivalent in form $p+q x+r x^{2}$ A0 if they multiply through by 18 .
		5	

Question	Answer	Marks	Guidance
10(a)	State or imply $C D=2 r-2 r \cos x$	B1	
	Using correct formulae for area of sector and trapezium, or equivalent, form an equation in r and x	M1	$\text { e.g. } 2 \times \frac{1}{2} r^{2} x=\frac{0.9}{2}(2 r+2 r-2 r \cos x) r \sin x$
	Obtain $x=0.9(2-\cos x) \sin x$	A1	AG, NFWW
		3	
10(b)	Calculate the values of a relevant expression or pair of expressions at $x=0.5$ and $x=0.7$	M1	Calculated for both values and correct for one value is sufficient for M1. Must be working in radians.
	Complete the argument correctly with correct values	A1	Must have sufficient accuracy to support the answer e.g. $\begin{aligned} & 0.5>0.484 \\ & 0.7<0.716\end{aligned}$ or $\begin{aligned} & 0.016>0 \\ & -0.016<0\end{aligned}$ or $\begin{aligned} & 0.96 \ldots<1 \\ & 1.02 \ldots>1\end{aligned}$
		2	
10(c)	State a suitable equation, e.g. $\cos x=\left(2-\frac{x}{0.9 \sin x}\right)$	B1	If working in reverse, the first B1 is for $\frac{x}{0.9 \sin x}=2-\cos x$
	Rearrange this as $x=0.9 \sin x(2-\cos x)$	B1	Need to see the complete sequence of changes.
		2	

Question	Answer	Marks	Guidance
10(d)	Use the iterative process correctly at least once	M1	Must be working in radians
	Obtain answer 0.62	A1	
	Show sufficient iterations to at least 4 d.p.to justify 0.62 to 2 d.p., or show there is a sign change in the interval $(0.615,0.625)$	A1	Allow recovery. N.B. A candidate who starts with 0.5 and stops at 0.61 or starts at 0.7 and stops at 0.63 can score M1A0A1 if they have worked to the required accuracy.
		3	
11(a)	Show that $O A=O B=\sqrt{5}$	B1	CWO
	Evaluate the scalar product of the correct position vectors	M1	e.g. $(0-1+0)$ Condone of using $A O$ and/or $B O$
	Divide their scalar product by the product of the moduli of their vectors and evaluate the inverse cosine of the result	M1	Much reach an angle. The question asks for the use of scalar product, so alternative methods (e.g. cosine rule) are not accepted.
	Obtain answer 101.5	A1	The question asks for an answer in degrees. Accept 102° or better. Mark radians (1.77) as a misread. Do not ISW: 78.5° as final answer scores A0.
		4	

Question	Answer	Marks	Guidance
11(b)	State or imply M has position vector $\mathbf{i}-\mathbf{k}$	B1	OE
	Taking a general point of $O M$ to have position vector $\lambda \mathbf{i}-\lambda \mathbf{k}$, express $A P=\sqrt{7} O A$ as an equation in λ	*M1	$\lambda($ their $\overrightarrow{O M})$
	State a correct equation in any form	A1	$\text { e.g. } \sqrt{(-2+\lambda)^{2}+1+(-\lambda)^{2}}=\sqrt{7} \sqrt{5}$
	Reduce to $\lambda^{2}-2 \lambda-15=0$	A1	OE
	Solve a quadratic and state a position vector	DM1	
	Obtain answers $5 \mathbf{i}-5 \mathbf{k}$ and $-3 \mathbf{i}+3 \mathbf{k}$	A1	Accept coordinates
	Alternative method for Question 11(b)		
	State or imply that $O P=\gamma \sqrt{2}$	B1	
	State or imply that $\cos \frac{1}{2} A O B=\sqrt{\frac{2}{5}}$ and use cosine rule to form an equation in γ	*M1	Allow $\cos \frac{1}{2} A O B=0.632 \ldots$
	State a correct equation in any form	A1	$\text { e.g. } 35=5+2 \gamma^{2}-2 \sqrt{5} \cdot \gamma \sqrt{2} \cdot \frac{\sqrt{2}}{\sqrt{5}}$
	Reduce to $\gamma^{2}-2 \gamma-15=0$	A1	OE
	Solve a quadratic and state a position vector	DM1	
	Obtain answers $5 \mathbf{i}-5 \mathbf{k}$ and $-3 \mathbf{i}+3 \mathbf{k}$	A1	Accept coordinates

Question	Answer	Marks	Guidance	
$11(b)$	Alternative method for Question 11(b)	B1	OE	
	State or imply M has position vector $\mathbf{i}-\mathbf{k}$	B1		
	State or imply that $A M=\sqrt{3}$	$* \mathbf{M 1}$	$M P=\sqrt{35-(A M)^{2}}$	
	Use Pythagoras to find $M P$	A1		
	Obtain $M P=4 \sqrt{2}$	DM1	$(\mathbf{i}-\mathbf{k}) \pm 4(\mathbf{i}-\mathbf{k})$	
	Correct method to find a position vector	A1	Accept coordinates	
	Obtain answers $5 \mathbf{i}-5 \mathbf{k}$ and $-3 \mathbf{i}+3 \mathbf{k}$	$\mathbf{6}$		

Cambridge International A Level

MATHEMATICS
 9709/33
 Paper 3 Pure Mathematics 3
 May/June 2021
 MARK SCHEME

Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	State correct first two terms $1+2 x$	B1	
	State a correct unsimplified version of the x^{2} or x^{3} term	M1	Symbolic binomial coefficients are not sufficient for the M mark.
	Obtain the next term $-x^{2}$	$\mathbf{A 1}$	
	Obtain the final term $\frac{4}{3} x^{3}$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2	State or imply $u^{2}-3 u-1=0$, or equivalent in 4^{x}	B1	
	Solve for u or 4^{x}	M1	A1
	Obtain root $\frac{1}{2}(3+\sqrt{13})$, or decimal in $[3.30,3.31]$	M1	
	Use correct method for finding x from a positive root	$\mathbf{A 1}$	
	Obtain answer $x=0.862$ and no other	$\mathbf{5}$	

PUBLISHED

Question	Answer	Marks	Guidance
3(a)	State $\frac{\mathrm{d} x}{\mathrm{~d} t}=1+\frac{1}{t+2}$	B1	
	Use product rule	M1	
	$\text { Obtain } \frac{\mathrm{d} y}{\mathrm{~d} t}=\mathrm{e}^{-2 t}-2(t-1) \mathrm{e}^{-2 t}$	A1	OE
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$	M1	
	Obtain correct answer in any simplified form, e.g. $\frac{(3-2 t)(t+2)}{t+3} \mathrm{e}^{-2 t}$	A1	
		5	
3(b)	Equate derivative to zero and solve for t	M1	
	Obtain $t=\frac{3}{2}$ and obtain answer $y=\frac{1}{2} \mathrm{e}^{-3}$, or exact equivalent	A1	
		2	

PUBLISHED

Question	Answer	Marks	Guidance
4(a)	State or imply the form $\frac{A}{1+2 x}+\frac{B}{4-x}$ and use a correct method to find a constant	M1	
	Obtain one of $A=4$ and $B=-1$	A1	
	Obtain the second value	A1	
		3	
4(b)	Integrate and obtain terms $2 \ln (1+2 x)+\ln (4-x)$	$\begin{array}{r} \text { B1FT } \\ + \text { B1FT } \end{array}$	The FT is on A and B.
	Substitute limits correctly in an integral of the form $a \ln (1+2 x)+b \ln (4-x)$, where $a b \neq 0$	M1	
	Obtain final answer $\ln \left(\frac{50}{27}\right)$	A1	
		4	

Question	Answer	Marks	Guidance
$5(\mathrm{a})$	Use double angle formula to express tan 4θ in terms of $\tan 2 \theta$	M1	
	Use double angle formula to express result in terms of $\tan \theta$	$\mathbf{M 1}$	
	Obtain a correct equation in $\tan \theta$ in any form	$\mathbf{A 1}$	$\mathbf{A 1}$
	Obtain the given answer	$\mathbf{4}$	

PUBLISHED

Question	Answer	Marks	Guidance
$5(\mathrm{~b})$	Solve for $\tan \theta$ and obtain a value of θ	M1	A1
	Obtain answer, e.g. 53.5°	$\mathbf{A 1}$	Ignore answers outside the given interval. Treat answers in radians as a misread.
	Obtain second answer, e.g. 126.5° and no other in the interval	$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(a)	Sketch a relevant graph, e.g. $y=\cot \frac{1}{2} x$	B1	
	Sketch a second relevant graph, e.g. $y=1+\mathrm{e}^{-x}$, and justify the given statement	B1	
		2	
6(b)	Calculate values of a relevant expression or pair of expressions at $x=1$ and $x=1.5$	M1	
	Complete the argument correctly with correct calculated values	A1	
		2	
6(c)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 1.34	A1	
	Show sufficient iterations to 4 d.p. to justify 1.34 to 2 d.p. or show there is a sign change in the interval $(1.335,1.345)$	A1	
		3	

Question	Answer	Marks	Guidance
7(a)(i)	Justify the given statement $\frac{M N}{y}=\frac{\mathrm{d} y}{\mathrm{~d} x}$	B1	
		1	
7(a)(ii)	Express the area of $P M N$ in terms of y and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and equate to $\tan x$	M1	
	Obtain the given equation correctly	A1	
		2	
7(b)	Separate variables and integrate at least one side	M1	
	Obtain term $\frac{1}{6} y^{3}$	A1	
	Obtain term of the form \pm ln $\cos x$	M1	
	Evaluate a constant or use $x=0$ and $y=1$ in a solution containing terms $a y^{3}$ and $\pm \ln \cos x$, or equivalent	M1	
	Obtain correct answer in any form, e.g. $\frac{1}{6} y^{3}=-\ln \cos x+\frac{1}{6}$	A1	
	Obtain final answer $y=\sqrt[3]{(1-6 \ln \cos x)}$	A1	OE
		6	

Question	Answer	Marks	Guidance
8(a)	Use quotient or product rule	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative to zero and solve for x	M1	
	Obtain $x=\sqrt[4]{\mathrm{e}}$ and $y=\frac{1}{4 \mathrm{e}}$, or exact equivalents	A1	
		4	
8(b)	Commence integration and reach $a x^{-3} \ln x+b \int x^{-3} \cdot \frac{1}{x} \mathrm{~d} x$	*M1	
	$\text { Obtain }-\frac{1}{3} x^{-3} \ln x+\frac{1}{3} \int x^{-3} \cdot \frac{1}{x} \mathrm{~d} x$	A1	OE
	Complete integration and obtain $-\frac{1}{3} x^{-3} \ln x-\frac{1}{9} x^{-3}$	A1	
	Substitute limits correctly, having integrated twice	DM1	
	Obtain answer $\frac{1}{9}-\frac{1}{3} a^{-3} \ln a-\frac{1}{9} a^{-3}$	A1	OE
	Justify the given statement	A1	
		6	

Question	Answer	Marks	Guidance
9(a)	State or imply $\overrightarrow{A B}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$	B1	OE
	Carry out a correct method to find $\overrightarrow{O D}$	M1	
	Obtain answer $-4 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$	A1	OE
		3	
9(b)	State $\mathbf{r}=-\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}-2 \mathbf{k})$	B1FT	OE. The FT is on $\overrightarrow{A B}$.
		1	
9(c)	For a general point P on $A B$, state $\overrightarrow{C P}$ or $\overrightarrow{D P}$ in component form, e.g. $\overrightarrow{C P}=(3-2 \lambda,-\lambda,-6+2 \lambda)$	*M1	
	Equate a relevant scalar product to zero or equate derivative of $\|\overrightarrow{C P}\|$ to zero or use Pythagoras in a relevant triangle and solve for λ	DM1	
	Obtain $\lambda=2$	A1	
	Show the perpendicular is of length 3	A1	
	Carry out a correct method to find the area of $A B C D$ and obtain the answer 18	A1	
	Alternative method for Question 9(c)		
	Use a scalar product to find the projection $C N$ (or $D N$) of $B C$ (or $A D$) on $C D$	*M1	
	Obtain $C N=3$ (or $D N=3$)	A1	
	Use Pythagoras to obtain $B N$ (or $A N$)	DM1	

PUBLISHED

Question	Answer	Marks	Guidance
9 (c) cont'd	Obtain answer 3	A1	
	Carry out a correct method to find the area of $A B C D$ and obtain the answer 18	A1	
		5	
Question	Answer	Marks	Guidance
10(a)	Substitute $-1+\sqrt{2} \mathrm{i}$ and attempt expansions of the z^{2} and z^{4} terms	M1	
	Use $\mathrm{i}^{2}=-1$ at least once	M1	
	Complete the verification correctly	A1	
		3	
10(b)	State second root $-1-\sqrt{2} \mathrm{i}$	A1	
	Carry out a method to find a quadratic factor with zeros $-1 \pm \sqrt{2} \mathrm{i}$	M1	
	Obtain $z^{2}+2 z+3$	A1	
	Commence division and reach partial quotient $z^{2}+k z$	M1	
	Obtain second quadratic factor $z^{2}-2 z+4$	A1	
	Solve a 3-term quadratic and use $\mathrm{i}^{2}=-1$	M1	
	Obtain roots $1+\sqrt{3} \mathrm{i}$ and $1-\sqrt{3} \mathrm{i}$	A1	
		7	

Cambridge International A Level

MATHEMATICS
 9709/31
 Paper 3 Pure Mathematics 3
 October/November 2020
 MARK SCHEME

Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

CWO Correct Working Only
ISW
SOI Ignore Subsequent Working

SOI Seen Or Implied
SC
Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT

Answer Which Rounds To

Question	Answer	Marks	Guidance
1	Make a recognisable sketch graph of $y=2\|x-3\|$ and the line $y=2-5 x$	B1	Need to see correct V at $x=3$, roughly symmetrical, $x=3$ stated, domain at least $(-2,5)$.
	Find x-coordinate of intersection with $y=2-5 x$	M1	Find point of intersection with $y=2\|x-3\|$ or solve $2-5 x$ with $2(x-3)$ or $-2(x-3)$
	Obtain $x=-\frac{4}{3}$	A1	
	State final answer $x<-\frac{4}{3}$	A1	Do not accept $x<-1.33$ [Do not condone \leqslant for $<$ in the final answer.]
	Alternative method for question 1		
	State or imply non-modular inequality/equality $(2-5 x)^{2}>, \geqslant==, 2^{2}(x-3)^{2}$, or corresponding quadratic equation, or pair of linear equations $(2-5 x)>, \geqslant,=, \pm 2(x-3)$	B1	Two correct linear equations only
	Make reasonable attempt at solving a 3-term quadratic, or solve one linear equation, or linear inequality for x	M1	$\begin{aligned} & 21 x^{2}+4 x-32=(3 x+4)(7 x-8)=0 \\ & 2-5 x \text { or }-(2-5 x) \text { with } 2(x-3) \text { or }-2(x-3) \end{aligned}$
	Obtain critical value $x=-\frac{4}{3}$	A1	
	State final answer $x<-\frac{4}{3}$	A1	Do not accept $x<-1.33$ [Do not condone \leqslant for $<$ in the final answer.]
		4	

PUBLISHED

Question	Answer	Marks	Guidance
2	Show a circle with centre the origin and radius 2	B1	B1
	Show the point representing 1-i	B1 FT	The FT is on the position of $1-\mathrm{i}$.
	Show a circle with centre 1-i and radius 1	B1 FT	The FT is on the position of $1-\mathrm{i}$. Shaded region outside circle with centre the origin and radius 2 and inside circle with centre $\pm 1 \pm$ i and radius 1
	Shade the appropriate region	$\mathbf{4}$	

Question	Answer	Marks	Guidance
3	State or imply $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \sin 2 \theta$ or $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=2+2 \cos 2 \theta$	B1	
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \div \frac{\mathrm{d} x}{\mathrm{~d} \theta}$	M1	
	Obtain correct answer $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2+2 \cos 2 \theta}{2 \sin 2 \theta}$	A1	OE
	Use correct double angle formulae	M1	
	Obtain the given answer correctly $\frac{\mathrm{d} y}{\mathrm{~d} x}=\cot \theta$	A1	AG. Must have simplified numerator in terms of $\cos \theta$.
	Alternative method for question 3		
	Start by using both correct double angle formulae e.g. $x=3-\left(2 \cos ^{2} \theta-1\right), y=2 \theta+2 \sin \theta \cos \theta$	M1	
	$\frac{\mathrm{d} x}{\mathrm{~d} \theta} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} \theta}$	B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(2+2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right)}{4 \cos \theta \sin \theta}$	M1 A1	
	Simplify to given answer correctly $\frac{\mathrm{d} y}{\mathrm{~d} x}=\cot \theta$	A1	AG

Question	Answer	Marks	Guidance
3	Alternative method for question 3		
	Set $=2 \theta$. State $\frac{\mathrm{d} x}{\mathrm{~d} t}=\sin t$ or $\frac{\mathrm{d} y}{\mathrm{~d} t}=1+\cos t$	B1	
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$	M1	
	Obtain correct answer $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1+\cos t}{\sin t}$	A1	OE
	Use correct double angle formulae	M1	
	Obtain the given answer correctly $\frac{\mathrm{d} y}{\mathrm{~d} x}=\cot \theta$	A1	
		5	
4	State or imply $\log _{10} 10=1$	B1	$\log _{10} 10^{-1}=-1$
	Use law of the logarithm of a power, product or quotient	M1	
	Obtain a correct equation in any form, free of logs	A1	e.g. $(2 x+1) /(x+1)^{2}=10^{-1}$ or $10(2 x+1) /(x+1)^{2}=10^{0}$ or 1 or $x^{2}+2 x+1=20 x+10$
	Reduce to $x^{2}-18 x-9=0$, or equivalent	A1	
	Solve a 3-term quadratic	M1	
	Obtain final answers $x=18.487$ and $x=-0.487$	A1	Must be 3 d.p. Do not allow rejection.
		6	

PUBLISHED

Question	Answer	Marks	Guidance
5(a)	Sketch a relevant graph, e.g. $y=\operatorname{cosec} x$	B1	$\operatorname{cosec} x$, U shaped, roughly symmetrical about $x=\frac{\pi}{2}, y\left(\frac{\pi}{2}\right)=1$ and domain at least $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$.
	Sketch a second relevant graph, e.g. $y=1+\mathrm{e}^{-\frac{1}{2} x}$, and justify the given statement	B1	Exponential graph needs $y(0)=2$, negative gradient, always increasing, and $y(\pi)>1$ Needs to mark intersections with dots, crosses, or say roots at points of intersection, or equivalent
		2	
5(b)	Use the iterative formula correctly at least twice	M1	2, 2.3217, 2.2760, 2.2824... Need to see 2 iterations and following value inserted correctly
	Obtain final answer 2.28	A1	Must be supported by iterations
	Show sufficient iterations to at least 4 d.p. to justify 2.28 to 2 d.p., or show there is a sign change in the interval (2.275, 2.285)	A1	
		3	

PUBLISHED

Question	Answer	Marks	Guidance
6(a)	State $R=\sqrt{15}$	B1	
	Use trig formulae to find α	M1	$\frac{\sin \alpha}{\cos \alpha}=\frac{3}{\sqrt{6}}$ with no error seen or $\tan \alpha=\frac{3}{\sqrt{6}}$ quoted then allow M1
	Obtain $\alpha=50.77$	A1	Must be 2 d.p. If radians 0.89 A0 MR
		3	
6(b)	Evaluate $\beta=\cos ^{-1} \frac{2.5}{\sqrt{15}}\left(49.797^{\circ}\right.$ to 4 d.p. $)$	B1 FT	The FT is on incorrect R. $\frac{x}{3}=\beta-\alpha \quad\left[-2.9^{\circ} \text { and }-301.7^{\circ}\right]$
	Use correct method to find a value of $\frac{x}{3}$ in the interval	M1	Needs to use $\frac{x}{3}$
	Obtain answer rounding to $x=301.6^{\circ}$ to 301.8°	A1	
	Obtain second answer rounding to $x=2.9(0)^{\circ}$ to $2.9(2)^{\circ}$ and no others in the interval	A1	
		4	

PUBLISHED

Question	Answer	Marks	Guidance
7(a)	Substitute $-1+\sqrt{5} \mathrm{i}$ in the equation and attempt expansions of x^{2} and x^{3}	M1	All working must be seen. Allow M1 if small errors in $1-2 \sqrt{5} \mathrm{i}-5$ or $1-\sqrt{5} \mathrm{i}-\sqrt{5 \mathrm{i}}-5$ and $4-2 \sqrt{5} \mathrm{i}+10$ or $4-4 \sqrt{5} \mathrm{i}+2 \sqrt{5} \mathrm{i}+10$
	Use $\mathrm{i}^{2}=-1$ correctly at least once	M1	$1-5$ or $4+10$ seen
	Complete the verification correctly	A1	$2(14-2 \sqrt{5 i})+(-4-2 \sqrt{5 i})+6(-1+\sqrt{5 i})-18=0$
		3	
7(b)	State second root $-1-\sqrt{5} \mathrm{i}$	B1	
	Carry out a complete method for finding a quadratic factor with zeros $-1+\sqrt{5 \mathrm{i}}$ and $-1-\sqrt{5} \mathrm{i}$	M1	
	Obtain $x^{2}+2 x+6$	A1	
	$\text { Obtain root } x=\frac{3}{2}$	A1	OE
	Alternative method for question 7(b)		
	State second root $-1-\sqrt{5} \mathrm{i}$	B1	
	$(x+1-\sqrt{5} \mathrm{i})(x+1+\sqrt{5 \mathrm{i}})(2 x+a)=2 x^{3}+x^{2}+6 x-18$	M1	
	$(1-\sqrt{5}$ i) $(1+\sqrt{5}$ i) $a=-18$	A1	
	$6 a=-18 \quad a=-3 \quad$ leading to $x=\frac{3}{2}$	A1	OE

Question	Answer	Marks	Guidance
7(b)	Alternative method for question 7(b)		
	State second root $-1-\sqrt{5} \mathrm{i}$	B1	
	$\mathrm{POR}=6 \mathrm{SOR}=-2$	M1	
	Obtain $x^{2}+2 x+6$	A1	
	Obtain root $x=\frac{3}{2}$	A1	OE
	Alternative method for question 7(b)		
	State second root $-1-\sqrt{5} \mathrm{i}$	B1	
	POR $(-1-\sqrt{5} \mathrm{i})(-1+\sqrt{5} \mathrm{i}) a=9$	M1 A1	
	Obtain root $x=\frac{3}{2}$	A1	OE
	Alternative method for question 7(b)		
	State second root $-1-\sqrt{5} \mathrm{i}$	B1	
	$\operatorname{SOR}(-1-\sqrt{5} \mathrm{i})+(-1+\sqrt{5} \mathrm{i})+a=-\frac{1}{2}$	M1 A1	
	Obtain root $x=\frac{3}{2}$	A1	OE
		4	

PUBLISHED

Question	Answer	Marks	Guidance
8	Separate variables correctly and attempt integration of at least one side	B1	$\frac{1}{y} \mathrm{~d} y=\frac{1-2 x^{2}}{x} \mathrm{~d} x$
	Obtain term $\ln y$	B1	
	Obtain terms $\ln x-x^{2}$	B1	
	Use $x=1, y=1$ to evaluate a constant, or as limits, in a solution containing at least 2 terms of the form $a \ln y, b \ln x$ and $c x^{2}$	M1	The 2 terms of required form must be from correct working e.g. $\ln y=\ln x-x^{2}+1$
	Obtain correct solution in any form	A1	
	Rearrange and obtain $y=x e^{1-x^{2}}$	A1	OE
		6	

PUBLISHED

Question	Answer	Marks	Guidance
$9(\mathrm{a})$	State or imply the form $\frac{A}{1-x}+\frac{B}{2+3 x}+\frac{C}{(2+3 x)^{2}}$	B1	
	Use a correct method for finding a coefficient	M1	
	Obtain one of $A=1, B=-1, C=6$	A1	
	Obtain a second value	A1	In the form $\frac{A}{1-x}+\frac{D x+E}{(2+3 x)^{2}}$, where $A=1, D=-3$
	Obtain the third value	and $E=4$ can score B1 M1 A1 A1 A1 as above.	
		$\mathbf{5}$	

PUBLISHED

Question	Answer	Marks	Guidance
9(b)	Use a correct method to find the first two terms of the expansion of $(1-x)^{-1},(2+3 x)^{-1},\left(1+\frac{3}{2} x\right)^{-1},(2+3 x)^{-2}$ or $\left(1+\frac{3}{2} x\right)^{-2}$	M1	Symbolic coefficients are not sufficient for the M1 $\begin{aligned} & A\left[\frac{1+(-1)(-x)+(-1)(-2)(-x)^{2}}{2 \ldots}\right] A=1 \\ & \frac{B}{2}\left[\frac{1+(-1)\left(\frac{3 x}{2}\right)+(-1)(-2)\left(\frac{3 x}{2}\right)^{2}}{2 \ldots}\right] B=1 \\ & \frac{C}{4}\left[\frac{1+(-2)\left(\frac{3 x}{2}\right)+(-2)(-3)\left(\frac{3 x}{2}\right)^{2}}{2 \ldots}\right] C=6 \end{aligned}$
	Obtain correct un-simplified expansions up to the term in of each partial fraction	A1 FT A1 FT $+$ A1 FT	$\begin{aligned} & \left(1+x+x^{2}\right)+\left(-\frac{1}{2}+\left(\frac{3}{4}\right) x-\left(\frac{9}{8}\right) x^{2}\right) \\ & +\left(\frac{6}{4}-\left(\frac{18}{4}\right) x+\left(\frac{81}{8}\right) x^{2}\right)[\text { The FT is on } A, B, C] \\ & \left(1-\frac{1}{2}+\frac{6}{4}\right)+\left(1+\frac{3}{4}-\frac{18}{4}\right) x+\left(1-\frac{9}{8}+\frac{81}{8}\right) x^{2} \end{aligned}$
	Obtain final answer $2-\frac{11}{4} x+10 x^{2}$, or equivalent	A1	Allow unsimplified fractions $\frac{(D x+E)}{4}\left[\frac{1+(-2)\left(\frac{3 x}{2}\right)+(-2)(-3)\left(\frac{3 x}{2}\right)^{2}}{2 \ldots}\right] D=-3, E=4$ The FT is on A, D, E.
		5	

Question	Answer	Marks	Guidance
$10(\mathrm{a})$	Use correct product or quotient rule	$* \mathbf{M 1}$	$\frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(-\frac{1}{2}\right)(2-x) \mathrm{e}^{-\frac{1}{2} x}-\mathrm{e}^{-\frac{1}{2} x}$
		M1 requires at least one of derivatives correct	

PUBLISHED

Question	Answer	Marks	Guidance
10(b)	Commence integration and reach $a(2-x) \mathrm{e}^{-\frac{1}{2} x}+b \int \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x$	*M1	Condone omission of $\mathrm{d} x$ $-2(2-x) \mathrm{e}^{-\frac{1}{2} x}+4 \mathrm{e}^{-\frac{1}{2} x} \text { or } 2 x \mathrm{e}^{-\frac{1}{2} x}$
	Obtain $-2(2-x) \mathrm{e}^{-\frac{1}{2} x}-2 \int \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x$	A1	OE
	Complete integration and obtain $2 x \mathrm{e}^{-\frac{1}{2} x}$	A1	OE
	Use correct limits, $x=0$ and $x=2$, correctly, having integrated twice	DM1	Ignore omission of zeros and allow max of 1 error
	Obtain answer $4 \mathrm{e}^{-1}$, or exact equivalent	A1	ISW
	Alternative method for question 10(b)		
	$\frac{\mathrm{d}\left(2 x \mathrm{e}^{-\frac{1}{2} x}\right)}{\mathrm{d} x}=2 \mathrm{e}^{-\frac{1}{2} x}-x \mathrm{e}^{-\frac{1}{2} x}$	*M1 A1	
	$\therefore 2 x \mathrm{e}^{-\frac{1}{2} x}$	A1	
	Use correct limits, $x=0$ and $x=2$, correctly, having integrated twice	DM1	Ignore omission of zeros and allow max of 1 error
	Obtain answer $4 \mathrm{e}^{-1}$, or exact equivalent	A1	ISW
		5	

Question	Answer	Marks	Guidance
11(a)	Express general point of at least one line correctly in component form, i.e. $(1+a \lambda, 2+2 \lambda, 1-\lambda) \text { or }(2+2 \mu, 1-\mu,-1+\mu)$	B1	
	Equate at least two pairs of corresponding components and solve for λ or for μ	M1	May be implied $1+a \lambda=2+2 \mu \quad 2+2 \lambda=1-\mu \quad 1-\lambda=-1+\mu$
	Obtain $\lambda=-3$ or $\mu=5$	A1	
	Obtain $a=-\frac{11}{3}$	A1	Allow $a=-3.667$
	State that the point of intersection has position vector $12 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}$	A1	Allow coordinate form ($12,-4,4)$
		5	

PUBLISHED

Question	Answer	Marks	Guidance
11(b)	Use correct process for finding the scalar product of direction vectors for the two lines	M1	$(a, 2,-1) \cdot(2,-1,1)=2 a-2-1$ or $2 a-3$
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and equate the result to $\pm \frac{1}{6}$	*M1	
	State a correct equation in a in any form, e.g. $\frac{2 a-2-1}{\sqrt{6} \sqrt{\left(a^{2}+5\right)}}= \pm \frac{1}{6}$	A1	
	Solve for a	DM1	Solve 3-term quadratic for a having expanded $(2 a-3)^{2}$ to produce 3 terms e.g. $\begin{aligned} & 36(2 a-3)^{2}=6\left(a^{2}+5\right) 138 a^{2}-432 a+294=0 \\ & 23 a^{2}-72 a+49=0 \quad(23 a-49)(a-1)=0 \end{aligned}$
	Obtain $a=1$	A1	
	Obtain $a=\frac{49}{23}$	A1	Allow $a=2.13$

Question	Answer	Marks	Guidance
11(b)	Alternative method for question 11(b)		
	$\begin{aligned} & \cos (\theta)=\left[\left\|a^{2}+2^{2}+(-1)^{2}\right\|^{2}+\left\|2^{2}+(-1)^{2}+1^{2}\right\|^{2}\right. \\ & \left.-\left\|(a-2)^{2}+3^{2}+(-2)^{2}\right\|^{2}\right] /\left[2\left\|a^{2}+2^{2}+(-1)^{2}\right\| \cdot 2^{2}+(-1)^{2}+1^{2} \mid\right] \end{aligned}$	M1	Use of cosine rule. Must be correct vectors.
	Equate the result to $\pm \frac{1}{6}$	$\begin{array}{r} \text { *M1 } \\ \mathbf{A 1} \end{array}$	Allow M1* here for any two vectors
	Solve for a	DM1	Solve 3-term quadratic for a having expanded $(2 a-3)^{2}$ to produce 3 terms e.g. $\begin{aligned} & 36(2 a-3)^{2}=6\left(a^{2}+5\right) 138 a^{2}-432 a+294=0 \\ & 23 a^{2}-72 a+49=0(23 a-49)(a-1)=0 \end{aligned}$
	Obtain $a=1$	A1	
	Obtain $a=\frac{49}{23}$	A1	Allow $a=2.13$
		6	

Cambridge International A Level

MATHEMATICS

9709/32
Paper 3 Pure Mathematics 3
October/November 2020
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

CWO Correct Working Only
ISW
SOI Ignore Subsequent Working

SOI Seen Or Implied
SC
Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT

Answer Which Rounds To

Question	Answer	Marks	Guidance
1	State that $1+\mathrm{e}^{-3 x}=\mathrm{e}^{2}$	B1	With no errors seen to that point
	Use correct method to solve an equation of the form $\mathrm{e}^{-3 x}=a$, where $a>0$, for x or equivalent	M1	$\left(\mathrm{e}^{-3 x}=6.389 \ldots\right)$ Evidence of method must be seen.
	Obtain answer $x=-0.618$ only	A1	Must be 3 decimal places
	Alternative method for question 1		
	State that $1+\mathrm{e}^{-3 x}=\mathrm{e}^{2}$	B1	
	Rearrange to obtain an expression for e^{x} and solve an equation of the form $\mathrm{e}^{x}=a$, where $a>0$, or equivalent	M1	$\mathrm{e}^{x}=\sqrt[3]{\frac{1}{\mathrm{e}^{2}-1}}$
	Obtain answer $x=-0.618$ only	A1	Must be 3 decimal places
		3	
Question	Answer	Marks	Guidance
2(a)	State a correct unsimplified version of the x or x^{2} or x^{3} term	M1	For the given expression
	State correct first two terms $1+2 x$	A1	
	Obtain the next two terms $-4 x^{2}+\frac{40}{3} x^{3}$	$\mathbf{A 1}+\mathbf{A 1}$	One mark for each correct term. ISW Accept $13 \frac{1}{3}$ The question asks for simplified coefficients, so candidates should cancel fractions.
		4	
2(b)	State answer $\|x\|<\frac{1}{6}$	B1	OE. Strict inequality
		1	

Question	Answer	Marks	Guidance
3(a)	State or imply $y \log 2=\log 3-2 x \log 3$	B1	Accept $y \ln 2=(1-2 x) \ln 3$
	State that the graph of y against x has an equation which is linear in x and y, or is of the form $a y=b x+c$	B1	Correct equation. Need a clear statement/comparison with matching linear form.
	Clear indication that the gradient is $-\frac{2 \ln 3}{\ln 2}$	B1	Must be exact. Any equivalent e.g. $-\frac{2 \log _{k^{3}}}{\log _{k^{2}}}, \log _{2} \frac{1}{9}$
		3	
3(b)	Substitute $y=3 x$ in an equation involving logarithms and solve for x	M1	
	Obtain answer $x=\frac{\ln 3}{\ln 72}$	A1	Allow M1A1 for the correct answer following decimals
		2	

Question	Answer	Marks	Guidance
4(a)	Use correct $\tan (A+B)$ formula and obtain an equation in $\tan \theta$	M1	$\text { e.g. } \frac{\tan \theta+\tan 60^{\circ}}{1-\tan \theta \tan 60^{\circ}}=\frac{2}{\tan \theta}$
	Use $\tan 60^{\circ}=\sqrt{3}$ and obtain a correct horizontal equation in any form	A1	e.g. $\tan \theta(\tan \theta+\sqrt{3})=2(1-\sqrt{3} \tan \theta)$
	Reduce to $\tan ^{2} \theta+3 \sqrt{3} \tan \theta-2=0$ correctly	A1	AG
		3	
4(b)	Solve the given quadratic to obtain a value for θ	M1	$\left(\tan \theta=\frac{-3 \sqrt{3} \pm \sqrt{35}}{2}=0.3599,-5.556\right)$
	Obtain one correct answer e.g. $\theta=19.8{ }^{\circ}$	A1	Accept 1d.p. or better. If over-specified must be correct. 19.797...., $100.2029 \ldots$
	Obtain second correct answer $\theta=100.2^{\circ}$ and no others in the given interval	A1	Ignore answers outside the given interval.
		3	

Question	Answer	Marks	Guidance
5(a)	State $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\sec ^{2} \theta$ or $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=-2 \sin \theta \cos \theta$	B1	CWO, AEF.
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \div \frac{\mathrm{d} x}{\mathrm{~d} \theta}$	M1	
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \sin \theta \cos ^{3} \theta$ from correct working	A1	AG
	Alternative method for question 5(a)		
	Convert to Cartesian form and differentiate	M1	$y=\frac{1}{1+x^{2}}$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$	A1	OE
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \sin \theta \cos ^{3} \theta$ from correct working	A1	AG
		3	

Question	Answer	Marks	Guidance
5(b)	Use correct product rule to obtain $\frac{\mathrm{d}}{\mathrm{d} \theta}\left(\pm 2 \cos ^{3} \theta \sin \theta\right)$	M1	Condone incorrect naming of the derivative For work done in correct context
	Obtain correct derivative in any form	A1	e.g. $\pm\left(-2 \cos ^{4} \theta+6 \sin ^{2} \theta \cos ^{2} \theta\right)$
	Equate derivative to zero and obtain an equation in one trig ratio	A1	e.g. $3 \tan ^{2} \theta=1$, or $4 \sin ^{2} \theta=1$ or $4 \cos ^{2} \theta=3$
	Obtain answer $x=-\frac{1}{\sqrt{3}}$	A1	$\text { Or }-\frac{\sqrt{3}}{3}$
	Alternative method for question 5(b)		
	Use correct quotient rule to obtain $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$	M1	
	Obtain correct derivative in any form	A1	$\frac{-2\left(1+x^{2}\right)^{2}+2 \times 2 x \times 2 x\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{4}}$
	Equate derivative to zero and obtain an equation in x^{2}	A1	e.g. $6 x^{2}=2$
	Obtain answer $x=-\frac{1}{\sqrt{3}}$	A1	
		4	

Question	Answer	Marks	Guidance			
6(a)	Multiply numerator and denominator by $1+\mathrm{i}$, or equivalent	M1	Must multiply out			
	Obtain numerator $6+8 \mathrm{i}$ or denominator 2	A1				
	Obtain final answer $u=3+4 \mathrm{i}$	A1				
	Alternative method for question 6(a)					
	Multiply out $(1-i)(x+i y)=7+i$ and compare real and imaginary parts	M1				
	Obtain $x+y=7$ or $y-x=1$	A1				
	Obtain final answer $u=3+4 \mathrm{i}$	A1				
		3				
6(b)	Show the point A representing u in a relatively correct position	B1 FT	The FT is on $x y \neq 0$.			
	Show the other two points B and C in relatively correct positions: approximately equal distance above / below real axis	B1	 Take the position of A as a guide to 'scale' if axes not marked			
		2				

Question	Answer	Marks	Guidance
$6(\mathrm{c})$	State or imply $\arg (1-\mathrm{i})=-\frac{1}{4} \pi$	$\mathbf{B 1}$	$\operatorname{Arg} C$
	Substitute exact arguments in $\arg (7+\mathrm{i})-\arg (1-\mathrm{i})=\arg u$	$\mathbf{M 1}$	Must see a statement about the relationship between the Args e.g. Arg $A=\operatorname{Arg} B-\operatorname{Arg} C$ or equivalent exact method
	Obtain $\tan ^{-1}\left(\frac{4}{3}\right)=\tan ^{-1}\left(\frac{1}{7}\right)+\frac{1}{4} \pi$ correctly	$\mathbf{A 1}$	Obtain given answer correctly from their $u=k(3+4 i)$
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
7(a)	Correct separation of variables	B1	$\int \sec ^{2} 2 x \mathrm{~d} x=\int \mathrm{e}^{-3 t} \mathrm{~d} t$ Needs correct structure
	Obtain term $-\frac{1}{3} \mathrm{e}^{-3 t}$	B1	
	Obtain term of the form $k \tan 2 x$	M1	From correct working
	Obtain term $\frac{1}{2} \tan 2 x$	A1	
	Use $x=0, t=0$ to evaluate a constant, or as limits in a solution containing terms of the form $a \tan 2 x$ and $b \mathrm{e}^{-3 t}$, where $a b \neq 0$	M1	
	Obtain correct solution in any form	A1	$\text { e.g. } \frac{1}{2} \tan 2 x=-\frac{1}{3} \mathrm{e}^{-3 t}+\frac{1}{3}$
	Obtain final answer $x=\frac{1}{2} \tan ^{-1}\left(\frac{2}{3}\left(1-\mathrm{e}^{-3 t}\right)\right)$	A1	
		7	
7(b)	State that x approaches $\frac{1}{2} \tan ^{-1}\left(\frac{2}{3}\right)$	B1 FT	Correct value. Accept $x \rightarrow 0.294$ The FT is dependent on letting $\mathrm{e}^{-3 t} \rightarrow 0$ in a solution containing $\mathrm{e}^{-3 t}$.
		1	

Question	Answer	Marks	Guidance
8(a)	Obtain $\overrightarrow{A B}=\left(\begin{array}{c}2 \\ -2 \\ -4\end{array}\right)$ and $\overrightarrow{C D}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$	B1	Or equivalent seen or implied
	Use the correct process for calculating the modulus of both vectors to obtain $A B$ and $C D$	M1	$A B=\sqrt{24}, C D=\sqrt{6}$
	Using exact values, verify that $A B=2 C D$	A1	Obtain given statement from correct work Allow from $B A=2 D C, \mathrm{OE}$
		3	
8(b)	Use the correct process to calculate the scalar product of the relevant vectors (their $\overrightarrow{A B}$ and $\overrightarrow{C D}$)	M1	$\left(\begin{array}{c}2 \\ -2 \\ -4\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ or $\left(\begin{array}{c}2 \\ -2 \\ -4\end{array}\right)$ and $\left(\begin{array}{l}4 \\ 2 \\ 2\end{array}\right)$
	Divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result	M1	
	Obtain answer 99.6° (or 1.74 radians) or better	A1	Do not ISW if go on to subtract from 180° (99.594..., 1.738...) Accept 260.4°
		3	

PUBLISHED

PUBLISHED

Question	Answer	Marks	Guidance
9(a)	State or imply the form $\frac{A}{3 x+2}+\frac{B x+C}{x^{2}+4}$	B1	
	Use a correct method for finding a constant	M1	
	Obtain one of $A=3, B=-1, C=3$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	
		5	
9(b)	Integrate and obtain $\ln (3 x+2) \ldots$	B1 FT	The FT is on A
	State a term of the form $k \ln \left(x^{2}+4\right)$.	M1	From $\int \frac{\lambda x}{x^{2}+4} \mathrm{~d} x$
	$\ldots-\frac{1}{2} \ln \left(x^{2}+4\right) \ldots$	A1 FT	The FT is on B
	$\ldots+\frac{3}{2} \tan ^{-1} \frac{x}{2}$	B1 FT	The FT is on C
	Substitute limits correctly in an integral with at least two terms of the form $a \ln (3 x+2), b \ln \left(x^{2}+4\right)$ and $c \tan ^{-1}\left(\frac{x}{2}\right)$, and subtract in correct order	M1	Using terms that have been obtained correctly from completed integrals
	Obtain answer $\frac{3}{2} \ln 2+\frac{3}{8} \pi$, or exact 2 -term equivalent	A1	
		6	

Question	Answer	Marks	Guidance
10(a)	Use correct product rule	M1	
	Obtain correct derivative in any form	A1	e.g. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}} \cos x-\sqrt{x} \sin x$. Accept in a or in x
	Equate derivative to zero and obtain $\tan a=\frac{1}{2 a}$	A1	Obtain given answer from correct working. The question says 'show that ..' so there should be an intermediate step e.g. $\cos x=2 x \sin x$. Allow $\tan x=\frac{1}{2 x}$
		3	
10(b)	Use the iterative process correctly at least once (get one value and go on to use it in a second use of the formula)	M1	Must be working in radians Degrees gives $1,12.6039,5.4133, \ldots$ M0
	Obtain final answer 3.29	A1	Clear conclusion
	Show sufficient iterations to at least 4 d.p.to justify 3.29 , or show there is a sign change in the interval $(3.285,3.295)$	A1	$3,3.3067,3.2917,3.2923$ Allow more than 4d.p. Condone truncation.
		3	

Question	Answer	Marks	Guidance
10(c)	State or imply the indefinite integral for the volume is $\pi \int(\sqrt{x} \cos x)^{2} \mathrm{~d} x$	B1	[If π omitted, or 2π or $\frac{1}{2} \pi$ used, give B0 and follow through. 4/6 available]
	Use correct $\cos 2 A$ formula, commence integration by parts and reach $x(a x+b \sin 2 x) \pm \int a x+b \sin 2 x \mathrm{~d} x$	*M1	Alternative: $\frac{x^{2}}{4}+\frac{x}{4} \sin 2 x-\int \frac{1}{4} \sin 2 x \mathrm{~d} x$
	Obtain $x\left(\frac{1}{2} x+\frac{1}{4} \sin 2 x\right)-\int \frac{1}{2} x+\frac{1}{4} \sin 2 x \mathrm{~d} x$, or equivalent	A1	
	Complete integration and obtain $\frac{1}{4} x^{2}+\frac{1}{4} x \sin 2 x+\frac{1}{8} \cos 2 x$	A1	OE
	Substitute limits $x=0$ and $x=\frac{1}{2} \pi$, having integrated twice	DM1	$\frac{\pi}{2}\left[\frac{\pi^{2}}{8}+0-\frac{1}{4}-0-0-\frac{1}{4}\right]$
	Obtain answer $\frac{1}{16} \pi\left(\pi^{2}-4\right)$, or exact equivalent	A1	CAO
		6	

Cambridge International A Level

MATHEMATICS

9709/33
Paper 3 Pure Mathematics 3
October/November 2020
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

CWO Correct Working Only
ISW
SOI Ignore Subsequent Working

SOI Seen Or Implied
SC
Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT
Answer Which Rounds To

Question	Answer	Marks	Guidance
1	Make a recognisable sketch graph of $y=2\|x-3\|$ and the line $y=2-5 x$	B1	Need to see correct V at $x=3$, roughly symmetrical, $x=3$ stated, domain at least $(-2,5)$.
	Find x-coordinate of intersection with $y=2-5 x$	M1	Find point of intersection with $y=2\|x-3\|$ or solve $2-5 x$ with $2(x-3)$ or $-2(x-3)$
	Obtain $x=-\frac{4}{3}$	A1	
	State final answer $x<-\frac{4}{3}$	A1	Do not accept $x<-1.33$ [Do not condone \leqslant for $<$ in the final answer.]
	Alternative method for question 1		
	State or imply non-modular inequality/equality $(2-5 x)^{2}>, \geqslant==, 2^{2}(x-3)^{2}$, or corresponding quadratic equation, or pair of linear equations $(2-5 x)>, \geqslant,=, \pm 2(x-3)$	B1	Two correct linear equations only
	Make reasonable attempt at solving a 3-term quadratic, or solve one linear equation, or linear inequality for x	M1	$\begin{aligned} & 21 x^{2}+4 x-32=(3 x+4)(7 x-8)=0 \\ & 2-5 x \text { or }-(2-5 x) \text { with } 2(x-3) \text { or }-2(x-3) \end{aligned}$
	Obtain critical value $x=-\frac{4}{3}$	A1	
	State final answer $x<-\frac{4}{3}$	A1	Do not accept $x<-1.33$ [Do not condone \leqslant for $<$ in the final answer.]
		4	

PUBLISHED

Question	Answer	Marks	Guidance
2	Show a circle with centre the origin and radius 2	B1	B1
	Show the point representing $1-\mathrm{i}$	B1 FT	The FT is on the position of $1-\mathrm{i}$.
	Show a circle with centre 1-i and radius 1	B1 FT	The FT is on the position of $1-\mathrm{i}$. Shaded region outside circle with centre the origin and radius 2 and inside circle with centre $\pm 1 \pm$ i and radius 1
	Shade the appropriate region	$\mathbf{4}$	

PUBLISHED

Question	Answer	Marks	Guidance
3	State or imply $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \sin 2 \theta$ or $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=2+2 \cos 2 \theta$	B1	
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \div \frac{\mathrm{d} x}{\mathrm{~d} \theta}$	M1	
	Obtain correct answer $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2+2 \cos 2 \theta}{2 \sin 2 \theta}$	A1	OE
	Use correct double angle formulae	M1	
	Obtain the given answer correctly $\frac{\mathrm{d} y}{\mathrm{~d} x}=\cot \theta$	A1	AG. Must have simplified numerator in terms of $\cos \theta$.
	Alternative method for question 3		
	Start by using both correct double angle formulae e.g. $x=3-\left(2 \cos ^{2} \theta-1\right), y=2 \theta+2 \sin \theta \cos \theta$	M1	
	$\frac{\mathrm{d} x}{\mathrm{~d} \theta} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} \theta}$	B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(2+2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right)}{4 \cos \theta \sin \theta}$	M1 A1	
	Simplify to given answer correctly $\frac{\mathrm{d} y}{\mathrm{~d} x}=\cot \theta$	A1	AG

Question	Answer	Marks	Guidance
3	Alternative method for question 3		
	Set $=2 \theta$. State $\frac{\mathrm{d} x}{\mathrm{~d} t}=\sin t$ or $\frac{\mathrm{d} y}{\mathrm{~d} t}=1+\cos t$	B1	
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$	M1	
	Obtain correct answer $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1+\cos t}{\sin t}$	A1	OE
	Use correct double angle formulae	M1	
	Obtain the given answer correctly $\frac{\mathrm{d} y}{\mathrm{~d} x}=\cot \theta$	A1	
		5	
4	State or imply $\log _{10} 10=1$	B1	$\log _{10} 10^{-1}=-1$
	Use law of the logarithm of a power, product or quotient	M1	
	Obtain a correct equation in any form, free of logs	A1	e.g. $(2 x+1) /(x+1)^{2}=10^{-1}$ or $10(2 x+1) /(x+1)^{2}=10^{0}$ or 1 or $x^{2}+2 x+1=20 x+10$
	Reduce to $x^{2}-18 x-9=0$, or equivalent	A1	
	Solve a 3-term quadratic	M1	
	Obtain final answers $x=18.487$ and $x=-0.487$	A1	Must be 3 d.p. Do not allow rejection.
		6	

Question	Answer	Marks	Guidance
5(a)	Sketch a relevant graph, e.g. $y=\operatorname{cosec} x$	B1	$\operatorname{cosec} x$, U shaped, roughly symmetrical about $x=\frac{\pi}{2}, y\left(\frac{\pi}{2}\right)=1$ and domain at least $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$.
	Sketch a second relevant graph, e.g. $y=1+\mathrm{e}^{-\frac{1}{2} x}$, and justify the given statement	B1	Exponential graph needs $y(0)=2$, negative gradient, always increasing, and $y(\pi)>1$ Needs to mark intersections with dots, crosses, or say roots at points of intersection, or equivalent
		2	
5(b)	Use the iterative formula correctly at least twice	M1	$2,2.3217,2.2760,2.2824 \ldots$ Need to see 2 iterations and following value inserted correctly
	Obtain final answer 2.28	A1	Must be supported by iterations
	Show sufficient iterations to at least 4 d.p. to justify 2.28 to 2 d.p., or show there is a sign change in the interval (2.275, 2.285)	A1	
		3	

PUBLISHED

Question	Answer	Marks	Guidance
6(a)	State $R=\sqrt{15}$	B1	
	Use trig formulae to find α	M1	$\frac{\sin \alpha}{\cos \alpha}=\frac{3}{\sqrt{6}}$ with no error seen or $\tan \alpha=\frac{3}{\sqrt{6}}$ quoted then allow M1
	Obtain $\alpha=50.77$	A1	Must be 2 d.p. If radians 0.89 A0 MR
		3	
6(b)	Evaluate $\beta=\cos ^{-1} \frac{2.5}{\sqrt{15}}\left(49.797^{\circ}\right.$ to 4 d.p. $)$	B1 FT	The FT is on incorrect R. $\frac{x}{3}=\beta-\alpha \quad\left[-2.9^{\circ} \text { and }-301.7^{\circ}\right]$
	Use correct method to find a value of $\frac{x}{3}$ in the interval	M1	Needs to use $\frac{x}{3}$
	Obtain answer rounding to $x=301.6^{\circ}$ to 301.8°	A1	
	Obtain second answer rounding to $x=2.9(0)^{\circ}$ to $2.9(2)^{\circ}$ and no others in the interval	A1	
		4	

PUBLISHED

Question	Answer	Marks	Guidance
7(a)	Substitute $-1+\sqrt{5} \mathrm{i}$ in the equation and attempt expansions of x^{2} and x^{3}	M1	All working must be seen. Allow M1 if small errors in $1-2 \sqrt{5} \mathrm{i}-5$ or $1-\sqrt{5} \mathrm{i}-\sqrt{5 \mathrm{i}}-5$ and $4-2 \sqrt{5} \mathrm{i}+10$ or $4-4 \sqrt{5} \mathrm{i}+2 \sqrt{5} \mathrm{i}+10$
	Use $\mathrm{i}^{2}=-1$ correctly at least once	M1	$1-5$ or $4+10$ seen
	Complete the verification correctly	A1	$2(14-2 \sqrt{5 i})+(-4-2 \sqrt{5 i})+6(-1+\sqrt{5 i})-18=0$
		3	
7(b)	State second root $-1-\sqrt{5} \mathrm{i}$	B1	
	Carry out a complete method for finding a quadratic factor with zeros $-1+\sqrt{5 \mathrm{i}}$ and $-1-\sqrt{5} \mathrm{i}$	M1	
	Obtain $x^{2}+2 x+6$	A1	
	$\text { Obtain root } x=\frac{3}{2}$	A1	OE
	Alternative method for question 7(b)		
	State second root $-1-\sqrt{5} \mathrm{i}$	B1	
	$(x+1-\sqrt{5} \mathrm{i})(x+1+\sqrt{5 \mathrm{i}})(2 x+a)=2 x^{3}+x^{2}+6 x-18$	M1	
	$(1-\sqrt{5}$ i) $(1+\sqrt{5}$ i) $a=-18$	A1	
	$6 a=-18 \quad a=-3 \quad$ leading to $x=\frac{3}{2}$	A1	OE

Question	Answer	Marks	Guidance
7(b)	Alternative method for question 7(b)		
	State second root $-1-\sqrt{5} \mathrm{i}$	B1	
	$\mathrm{POR}=6 \mathrm{SOR}=-2$	M1	
	Obtain $x^{2}+2 x+6$	A1	
	Obtain root $x=\frac{3}{2}$	A1	OE
	Alternative method for question 7(b)		
	State second root $-1-\sqrt{5} \mathrm{i}$	B1	
	POR $(-1-\sqrt{5} \mathrm{i})(-1+\sqrt{5} \mathrm{i}) a=9$	M1 A1	
	Obtain root $x=\frac{3}{2}$	A1	OE
	Alternative method for question 7(b)		
	State second root $-1-\sqrt{5} \mathrm{i}$	B1	
	$\operatorname{SOR}(-1-\sqrt{5} \mathrm{i})+(-1+\sqrt{5} \mathrm{i})+a=-\frac{1}{2}$	M1 A1	
	Obtain root $x=\frac{3}{2}$	A1	OE
		4	

Question	Answer	Marks	Guidance
8	Separate variables correctly and attempt integration of at least one side	B1	$\frac{1}{y} \mathrm{~d} y=\frac{1-2 x^{2}}{x} \mathrm{~d} x$
	Obtain term $\ln y$	B1	
	Obtain terms $\ln x-x^{2}$	B1	
	Use $x=1, y=1$ to evaluate a constant, or as limits, in a solution containing at least 2 terms of the form $a \ln y, b \ln x$ and $c x^{2}$	M1	The 2 terms of required form must be from correct working e.g. $\ln y=\ln x-x^{2}+1$
	Obtain correct solution in any form	A1	
	Rearrange and obtain $y=x e^{1-x^{2}}$	A1	OE
		6	

Question	Answer	Marks	Guidance
$9(\mathrm{a})$	State or imply the form $\frac{A}{1-x}+\frac{B}{2+3 x}+\frac{C}{(2+3 x)^{2}}$	B1	
	Use a correct method for finding a coefficient	M1	
	Obtain one of $A=1, B=-1, C=6$	A1	
	Obtain a second value	A1	In the form $\frac{A}{1-x}+\frac{D x+E}{(2+3 x)^{2}}$, where $A=1, D=-3$
	Obtain the third value	and $E=4$ can score B1 M1 A1 A1 A1 as above.	
		$\mathbf{5}$	

PUBLISHED

Question	Answer	Marks	Guidance
9(b)	Use a correct method to find the first two terms of the expansion of $(1-x)^{-1},(2+3 x)^{-1},\left(1+\frac{3}{2} x\right)^{-1},(2+3 x)^{-2}$ or $\left(1+\frac{3}{2} x\right)^{-2}$	M1	Symbolic coefficients are not sufficient for the M1 $\begin{aligned} & A\left[\frac{1+(-1)(-x)+(-1)(-2)(-x)^{2}}{2 \ldots}\right] A=1 \\ & \frac{B}{2}\left[\frac{1+(-1)\left(\frac{3 x}{2}\right)+(-1)(-2)\left(\frac{3 x}{2}\right)^{2}}{2 \ldots}\right] B=1 \\ & \frac{C}{4}\left[\frac{1+(-2)\left(\frac{3 x}{2}\right)+(-2)(-3)\left(\frac{3 x}{2}\right)^{2}}{2 \ldots}\right] C=6 \end{aligned}$
	Obtain correct un-simplified expansions up to the term in of each partial fraction	A1 FT A1 FT $+$ A1 FT	$\begin{aligned} & \left(1+x+x^{2}\right)+\left(-\frac{1}{2}+\left(\frac{3}{4}\right) x-\left(\frac{9}{8}\right) x^{2}\right) \\ & +\left(\frac{6}{4}-\left(\frac{18}{4}\right) x+\left(\frac{81}{8}\right) x^{2}\right)[\text { The FT is on } A, B, C] \\ & \left(1-\frac{1}{2}+\frac{6}{4}\right)+\left(1+\frac{3}{4}-\frac{18}{4}\right) x+\left(1-\frac{9}{8}+\frac{81}{8}\right) x^{2} \end{aligned}$
	Obtain final answer $2-\frac{11}{4} x+10 x^{2}$, or equivalent	A1	Allow unsimplified fractions $\frac{(D x+E)}{4}\left[\frac{1+(-2)\left(\frac{3 x}{2}\right)+(-2)(-3)\left(\frac{3 x}{2}\right)^{2}}{2 \ldots}\right] D=-3, E=4$ The FT is on A, D, E.
		5	

Question	Answer	Marks	Guidance
10(a)	Use correct product or quotient rule	*M1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(-\frac{1}{2}\right)(2-x) \mathrm{e}^{-\frac{1}{2} x}-\mathrm{e}^{-\frac{1}{2} x}$ M1 requires at least one of derivatives correct
	Obtain correct derivative in any form	A1	
	Equate derivative to zero and solve for x	DM1	
	Obtain $x=4$	A1	ISW
	Obtain $y=-2 \mathrm{e}^{-2}$, or exact equivalent	A1	
		5	

PUBLISHED

Question	Answer	Marks	Guidance
10(b)	Commence integration and reach $a(2-x) \mathrm{e}^{-\frac{1}{2} x}+b \int \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x$	*M1	Condone omission of $\mathrm{d} x$ $-2(2-x) \mathrm{e}^{-\frac{1}{2} x}+4 \mathrm{e}^{-\frac{1}{2} x} \text { or } 2 x \mathrm{e}^{-\frac{1}{2} x}$
	Obtain $-2(2-x) \mathrm{e}^{-\frac{1}{2} x}-2 \int \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x$	A1	OE
	Complete integration and obtain $2 x \mathrm{e}^{-\frac{1}{2} x}$	A1	OE
	Use correct limits, $x=0$ and $x=2$, correctly, having integrated twice	DM1	Ignore omission of zeros and allow max of 1 error
	Obtain answer $4 \mathrm{e}^{-1}$, or exact equivalent	A1	ISW
	Alternative method for question 10(b)		
	$\frac{\mathrm{d}\left(2 x \mathrm{e}^{-\frac{1}{2} x}\right)}{\mathrm{d} x}=2 \mathrm{e}^{-\frac{1}{2} x}-x \mathrm{e}^{-\frac{1}{2} x}$	*M1 A1	
	$\therefore 2 x \mathrm{e}^{-\frac{1}{2} x}$	A1	
	Use correct limits, $x=0$ and $x=2$, correctly, having integrated twice	DM1	Ignore omission of zeros and allow max of 1 error
	Obtain answer $4 \mathrm{e}^{-1}$, or exact equivalent	A1	ISW
		5	

PUBLISHED

Question	Answer	Marks	Guidance
11(a)	Express general point of at least one line correctly in component form, i.e. $(1+a \lambda, 2+2 \lambda, 1-\lambda) \text { or }(2+2 \mu, 1-\mu,-1+\mu)$	B1	
	Equate at least two pairs of corresponding components and solve for λ or for μ	M1	May be implied $1+a \lambda=2+2 \mu \quad 2+2 \lambda=1-\mu \quad 1-\lambda=-1+\mu$
	Obtain $\lambda=-3$ or $\mu=5$	A1	
	Obtain $a=-\frac{11}{3}$	A1	Allow $a=-3.667$
	State that the point of intersection has position vector $12 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}$	A1	Allow coordinate form ($12,-4,4)$
		5	

PUBLISHED

Question	Answer	Marks	Guidance
11(b)	Use correct process for finding the scalar product of direction vectors for the two lines	M1	$(a, 2,-1) \cdot(2,-1,1)=2 a-2-1$ or $2 a-3$
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and equate the result to $\pm \frac{1}{6}$	*M1	
	State a correct equation in a in any form, e.g. $\frac{2 a-2-1}{\sqrt{6} \sqrt{\left(a^{2}+5\right)}}= \pm \frac{1}{6}$	A1	
	Solve for a	DM1	Solve 3-term quadratic for a having expanded $(2 a-3)^{2}$ to produce 3 terms e.g. $\begin{aligned} & 36(2 a-3)^{2}=6\left(a^{2}+5\right) 138 a^{2}-432 a+294=0 \\ & 23 a^{2}-72 a+49=0(23 a-49)(a-1)=0 \end{aligned}$
	Obtain $a=1$	A1	
	$\text { Obtain } a=\frac{49}{23}$	A1	Allow $a=2.13$

Question	Answer	Marks	Guidance
11(b)	Alternative method for question 11(b)		
	$\begin{aligned} & \cos (\theta)=\left[\left\|a^{2}+2^{2}+(-1)^{2}\right\|^{2}+\left\|2^{2}+(-1)^{2}+1^{2}\right\|^{2}\right. \\ & \left.-\left\|(a-2)^{2}+3^{2}+(-2)^{2}\right\|^{2}\right] /\left[2\left\|a^{2}+2^{2}+(-1)^{2}\right\| \cdot 2^{2}+(-1)^{2}+1^{2} \mid\right] \end{aligned}$	M1	Use of cosine rule. Must be correct vectors.
	Equate the result to $\pm \frac{1}{6}$	$\begin{array}{r} * \mathbf{M 1} \\ \mathbf{A 1} \end{array}$	Allow M1* here for any two vectors
	Solve for a	DM1	Solve 3-term quadratic for a having expanded $(2 a-3)^{2}$ to produce 3 terms e.g. $\begin{aligned} & 36(2 a-3)^{2}=6\left(a^{2}+5\right) 138 a^{2}-432 a+294=0 \\ & 23 a^{2}-72 a+49=0 \quad(23 a-49)(a-1)=0 \end{aligned}$
	Obtain $a=1$	A1	
	Obtain $a=\frac{49}{23}$	A1	Allow $a=2.13$
		6	

Cambridge International A Level

MATHEMATICS
 9709/31
 Paper 3 Pure Mathematics 3
 October/November 2021
 MARK SCHEME

Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	Guidance
1	State or imply non-modular equation $4^{2}\left(5^{x}-1\right)^{2}=\left(5^{x}\right)^{2}$ or pair of equations $4\left(5^{x}-1\right)= \pm 5^{x}$	M1	
	Obtain $5^{x}=\frac{4}{3}$ and $5^{x}=\frac{4}{5}\left(\right.$ or $\left.5^{x+1}=4\right)$	A1	
	Use correct method for solving an equation of the form $5^{x}=a$, or $5^{x+1}=b$ where $a>0$, or $b>0$	M1	
	Obtain answers $x=0.179$ and $x=-0.139$	A1	
	Alternative method for question 1		
	Obtain $5^{x}=\frac{4}{3}$ by solving an equation	B1	
	Obtain $5^{x}=\frac{4}{5}\left(\right.$ or $\left.5^{x+1}=4\right)$ by solving an equation	B1	
	Use correct method for solving an equation of the form $5^{x}=a$, or $5^{x+1}=b$ where $a>0$, or $b>0$	M1	
	Obtain answers $x=0.179$ and $x=-0.139$	A1	
		4	

Question	Answer	Marks	Guidance
2(a)	State $R=\sqrt{34}$	B1	
	Use trig formulae to find α	M1	$\tan \alpha=\frac{3}{5} \text { or } \sin \alpha=\frac{3}{\sqrt{34}} \text { or } \cos \alpha=\frac{5}{\sqrt{34}} \text {. }$
	Obtain $\alpha=0.54$	A1	30.96° scores M1A0.
		3	
2(b)	State greatest value 34	B1 FT	Their R^{2}.
	State least value 0	B1	
		2	

Question	Answer	Marks	Guidance
3(a)	Use correct product rule	M1	
	Obtain correct derivative in any form	A1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{1-2 x}-2 x \mathrm{e}^{1-2 x}$
	Equate derivative to zero and solve for x	M1	
	Obtain $x=\frac{1}{2}$ and $y=\frac{1}{2}$	A1	
		4	
3(b)	Use a correct method for determining the nature of a stationary point	M1	$\text { e.g. } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-2 \mathrm{e}^{1-2 x}-2(1-2 x) \mathrm{e}^{1-2 x}$
	Show that it is a maximum point	A1	
		2	

Question	Answer	Marks	Guidance
4	State that $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}}$ or $\mathrm{d} u=\frac{1}{2 \sqrt{x}} \mathrm{~d} x$	B1	
	Substitute throughout for x and dx	M1	
	Obtain a correct integral with integrand $\frac{2}{u^{2}+1}$	A1	
	Integrate and obtain term of the form $k \tan ^{-1} u$	M1	$\left(2 \tan ^{-1} u\right)$
	Use limits $\sqrt{3}$ and ∞ for u or equivalent and evaluate trig.	A1	e.g. $2\left(\frac{\pi}{2}-\frac{\pi}{3}\right)$ Must be working in radians.
	Obtain answer $\frac{1}{3} \pi$	A1	Or equivalent single term.
		6	

Question	Answer	Marks	Guidance
5(a)	Use correct trig formulae and express equation in terms of $\tan \theta$	M1	
	Obtain a correct equation in $\tan \theta$ in any form	A1	e.g. $\frac{1-\tan ^{2} \theta}{2 \tan \theta}+\frac{1}{\tan \theta}=2$
	Reduce to $\tan ^{2} \theta+4 \tan \theta-3=0$, or 3-term equivalent	A1	
		3	
5(b)	Solve a 3-term quadratic for $\tan \theta$ and calculate θ	M1	$(\tan \theta=-2 \pm \sqrt{7})$
	Obtain answer, e.g. 0.573	A1	Must be 3 d.p.
	Obtain second answer, e.g. 1.783 and no other	A1	Ignore answers outside the given interval. Treat answers in degrees as a misread. $\left(32.9^{\circ}, 102.1^{\circ}\right)$
		3	

PUBLISHED

Question	Answer	Marks	Guidance
6	State or imply $1+2 x$ as first terms of the expansion of $\sqrt{1+4 x}$	B1	Allow for correct unsimplified expression.
	State or imply $-2 x^{2}$ as third term of the expansion of $\sqrt{1+4 x}$	B1	Allow for correct unsimplified expression.
	Form an expression for the coefficient of x or coefficient of x^{2} in the expansion of $(a+b x) \sqrt{1+4 x}$ and equate to given coefficient	M1	All relevant terms considered.
	Obtain $2 a+b=3$, or equivalent	A1	One correct equation.
	Obtain $2 a+2 b=-6$ or equivalent	A1	Second correct equation.
	Obtain answer $a=2$ and $b=-1$	$\mathbf{6}$	

PUBLISHED

Question	Answer	Marks	Guidance
7(a)	Show sufficient working to justify the given answer	B1	
		1	
7(b)	Correct separation of variables	B1	$\text { e.g. }-\int \frac{1}{t} \mathrm{~d} t=\int \frac{1}{x \ln x} \mathrm{~d} x$
	Obtain term $\ln (\ln x)$	B1	
	Obtain term $-\ln t$	B1	
	Evaluate a constant or use $x=\mathrm{e}$ and $t=2$ as limits in an expression involving $\ln (\ln x)$	M1	
	Obtain correct solution in any form, e.g. $\ln (\ln x)=-\ln t+\ln 2$	A1	
	Use log laws to enable removal of logarithms	M1	
	Obtain answer $x=\mathrm{e}^{\frac{2}{t}}$, or simplified equivalent	A1	
		7	
7(c)	State that x tends to 1 coming from $x=\mathrm{e}^{\frac{k}{t}}$	B1	
		1	

Question	Answer	Marks	Guidance
8(a)	Commence integration and reach $a \sqrt{x} \ln x+b \int \sqrt{x} \cdot \frac{1}{x} \mathrm{~d} x$, or equivalent	*M1	
	Obtain $2 \sqrt{x} \ln x-\int 2 \sqrt{x} \cdot \frac{1}{x} \mathrm{~d} x$, or equivalent	A1	
	Obtain integral $2 \sqrt{x} \ln x-4 \sqrt{x}$, or equivalent	A1	
	Substitute limits and equate result to 6	DM1	
	Rearrange and obtain $a=\exp \left(\frac{1}{\sqrt{a}}+2\right)$	A1	Obtain given answer from full and correct working.
		5	
8(b)	Calculate the values of a relevant expression or pair of expressions at $a=9$ and $a=11$	M1	e.g. $\left\{\begin{array}{l}9<10.31 \\ 11>9.99\end{array}\right.$ or $1.31>0,-1.01<0$
	Complete the argument correctly with correct values	A1	
		2	
8(c)	Use the iterative process $a_{n+1}=\exp \left(\frac{1}{\sqrt{a_{n}}}+2\right)$ correctly at least once	M1	
	Obtain answer 10.12	A1	
	Show sufficient iterations to 4 dp to justify 10.12 to 2 dp , or show there is a sign change in the interval $(10.115,10.125)$	A1	$\begin{array}{ll} \text { e.g. } & 10,10.1374,10.1156,10.1190, \ldots . \\ & 9,10.3123,10.0886,10.1233,10.1178, \ldots \\ & 11,9.9893,10.1391,10.1153,10.1191, \ldots . \end{array}$
		3	

Question	Answer	Marks	Guidance
9(a)	Use correct method to evaluate the scalar product of relevant vectors	M1	$(-4-2+6)$
	Obtain answer zero and deduce the given statement	A1	Need a conclusion or a statement in advance that the scalar product will be zero.
		2	
9(b)	Express general point of l or m in component form, e.g. $(3+4 s, 2-s, 5+3 s)$ or $(1-t,-1+2 t,-2+2 t)$	B1	
	Equate at least two pairs of components and solve for s or for t	M1	
	Obtain correct answer $s=-1$ and $t=2$	A1	
	Verify that all three equations are satisfied	A1	
	State position vector of the intersection $-\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$, or equivalent	A1	Can come from 1 correct value and no contradictory statement.
		5	

PUBLISHED

Question	Answer	Marks	Guidance
9(c)	Taking a general point P on m, form an equation in t by either equating a relevant scalar product to zero, or equating the derivative of $\|\overrightarrow{O P}\|$ to zero, or taking a specific point Q on m, e.g. $(1,-1,-2)$, using Pythagoras in triangle $O P Q$	*M1	e.g. $\left(\begin{array}{c}1-t \\ -1+2 t \\ -2+2 t\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right)=0$
	Obtain $t=\frac{7}{9}$	A1	
	Carry out correct method to find $O P$	DM1	
	$\text { Obtain } \frac{\sqrt{5}}{3}$	A1	Obtain the given answer from full and correct working.
	Alternative method for question 9(c)		
	Take a specific point Q on m, e.g. $(-1,3,2)$ and use a scalar product to find $Q N$, the projection of $O Q$ on m	*M1	
	Obtain $Q N=\frac{11}{3}$, or equivalent	A1	
	Use Pythagoras to obtain $O N$	DM1	
	Obtain the given answer correctly	A1	
		4	

PUBLISHED

Question	Answer	Marks	Guidance
10(a)	Substitute $1+2 \mathrm{i}$ in the polynomial and attempt expansions of x^{2} and x^{3}	M1	$u^{2}=-3+4 \mathrm{i}, u^{3}=-11-2 \mathrm{i}$ Full substitution but need not simplify.
	Equate real and/or imaginary parts to zero	M1	$-18-3 a+b=0,4+4 a=0$
	Obtain $a=-1$	A1	
	Obtain $b=15$	A1	
		4	
10(b)	State second root $1-2 \mathrm{i}$	B1	
		1	
10(c)	State the quadratic factor $x^{2}-2 x+5$	B1	
	State the linear factor $2 x+3$	B1	
		2	
10(d)(i)	Show a circle with centre $1+2 \mathrm{i}$	B1	
	Show circle passing through the origin	B1	4
	Show the half line $y=x$ in the first quadrant (accept chord of circle)	B1	. 住
	Shade the correct region on a correct diagram	B1	
		4	
10(d)(ii)	State answer $2-\sqrt{5}$	B1	
		1	

Cambridge International A Level

MATHEMATICS
 9709/32
 Paper 3 Pure Mathematics 3
 October/November 2021
 MARK SCHEME

Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	Guidance
1	Use law of the logarithm of a product, a quotient or power	*M1	e.g. $\ln \left(7^{x}\right)=x \ln 7$
	Obtain a correct linear equation in any form	A1	e.g. $\ln 3+(1-x) \ln 2=x \ln 7$
	Solve a linear equation for x	DM1	
	Obtain answer $x=\frac{\ln 6}{\ln 14}$	A1	Maximum 3 out of 4 available if final answer not in required form e.g. $0.67 \ldots$ ISW once correct answer seen.
	Alternative method for Question 1		
	$2^{1-x}=2 \times 2^{-x}$	*M1	OE
	$6=2^{x} 7^{x}\left[=14^{x}\right]$	A1	
	Use law of the logarithm of a power to solve for x	DM1	Must be a linear power. Allow $x=\ln _{14}(6)$.
	Obtain answer $x=\frac{\ln 6}{\ln 14}$	A1	ISW once correct answer seen.
		4	

Question	Answer	Marks	Guidance
2	State or imply non-modular inequality $(3 x-a)^{2}>2^{2}(x+2 a)^{2}$, or corresponding quadratic equation, or pair of linear equations or linear inequalities	B1	Need 2^{2} seen or implied.
	Make reasonable attempt to solve a 3-term quadratic, or solve two linear equations for x in terms of a	M1	$\left(5 x^{2}-22 a x-15 a^{2}=0\right)$
	Obtain critical values $x=5 a$ and $x=-\frac{3}{5} a$ and no others	A1	OE Accept incorrect inequalities with correct critical values. Must state 2 values i.e. $\frac{a \pm b}{c}$ is not sufficient.
	State final answer $x>5 a, x<-\frac{3}{5} a$	A1	Do not condone \geqslant for $>$ or \leqslant for $<$ in the final answer. $5 a<x<-\frac{3}{5} a$ is $\mathbf{A 0}$, 'and' is A0.
	Alternative method for Question 2		
	Obtain critical value $x=5 a$ from a graphical method, or by solving a linear equation or linear inequality	B1	
	Obtain critical value $x=-\frac{3}{5} a$ similarly	B2	Maximum 2 marks if more than 2 critical values.
	State final answer $x>5 a, x<-\frac{3}{5} a$	B1	Do not condone \geq for $>$ or \leq for $<$ in the final answer. $5 a<x<-\frac{3}{5} a$ is $\mathbf{B 0}$, 'and' is $\mathbf{B 0}$.
		4	

Question	Answer	Marks	Guidance
3(a)	Substitute for u and w and state correct conjugate of one side	B1	
	Express the other side without conjugates and confirm $(u+w)^{*}=u^{*}+w^{*}$	B1	Given answer. Needs explicit reference to conjugate of both sides.
		2	
3(b)	Substitute and remove conjugates to obtain a correct equation in x and y	B1	e.g. $x+2-(y+1) i+(2+i)(x+i y)=0$
	Use $i^{2}=-1$ and equate real and imaginary parts to zero	M1	
	Obtain two correct equations in x and y	A1	e.g. $3 x-y+2=0$ and $x+y-1=0$. Allow $x \mathrm{i}+y \mathrm{i}-\mathrm{i}=0$.
	Solve and obtain answer $z=-\frac{1}{4}+\frac{5}{4} \mathrm{i}$	A1	Allow for real and imaginary parts stated separately.
		4	

PUBLISHED

Question	Answer	Marks	Guidance
4	State or imply the form $A+\frac{B}{2 x-1}+\frac{C}{x-3}$	B1	$\frac{D x+E}{2 x-1}+\frac{F}{x-3}$ and $\frac{P}{2 x-1}+\frac{Q x+R}{x-3}$ are also valid.
	Use a correct method for finding a constant	M1	
	Obtain one of $A=2, B=-3$ and $C=2$	A1	Allow maximum M1A1 for one or more 'correct' values after B0.
	Obtain a second value	A1	
	Obtain the third value	A1	
	Alternative method for Question 4		
	Divide numerator by denominator	M1	
	Obtain $2\left[+\frac{P x+Q}{(2 x-1)(x-3)}\right]$	A1	$\left[2+\frac{x+7}{(2 x-1)(x-3)}\right]$
	State or imply the form $\frac{D}{2 x-1}+\frac{E}{x-3}$	B1	
	Obtain one of $D=-3$ and $E=2$	A1	
	Obtain a second value	A1	
		5	

Question	Answer	Marks	Guidance
5(a)	Show circle with centre $3+2 \mathrm{i}$	B1	
	Show circle with radius 1 . Must match their scales: if scales not identical should have an ellipse.	B1	2 i
	Show line $y=2$ in at least the diameter of a circle in the first quadrant	B1	
	Shade the correct region in a correct diagram	B1	o
		4	
5(b)	Identify the correct point	B1	
	Carry out a correct method for finding the argument	M1	e.g. $\arg x=\tan ^{-1} \frac{2}{3}+\sin ^{-1} \frac{1}{\sqrt{13}}$ Exact working required.
	Obtain answer 49.8°	A1	Or better. 0.869 radians scores B1M1A0.
		3	Special Case 1: B1M0 for 45° if they have shaded the wrong half of the circle. Special Case 2: 3 out of 3 available if they identify the correct point on the correct circle and it is consistent with their shading.

PUBLISHED

Question	Answer	Marks	Guidance
6(a)	State correct expansion of $\sin (3 x+2 x)$ or $\sin (3 x-2 x)$	B1	
	Substitute expansions in $\frac{1}{2}(\sin 5 x+\sin x)$, or equivalent	M1	
	Simplify and obtain $\frac{1}{2}(\sin 5 x+\sin x)=\sin 3 x \cos 2 x$	A1	Obtain the given identity correctly.
		3	
6(b)	Obtain integral $-\frac{1}{10} \cos 5 x-\frac{1}{2} \cos x$, or equivalent	B1	
	Substitute limits correctly in an expression of the form $p \cos 5 x+q \cos x$	M1	Correct limits and subtracted the right way around. Do not need values of trig functions for M1. Maximum one slip.
	Obtain $\frac{1}{5}(3-\sqrt{2})$	A1	Substitute values and obtain the given answer following full, correct and exact working.
		3	

PUBLISHED

Question	Answer	Marks	Guidance
7	Separate variables correctly	B1	$\int \frac{1}{y^{2}} \mathrm{~d} y=\int 4 x \mathrm{e}^{-2 x} \mathrm{~d} x$
	$\int \frac{1}{y^{2}} \mathrm{~d} y=-\frac{1}{y}$	B1	OE
	Commence the other integration and reach $a x \mathrm{e}^{-2 x}+b \int \mathrm{e}^{-2 x} \mathrm{~d} x$	M1	
	Obtain $-2 x \mathrm{e}^{-2 x}+2 \int \mathrm{e}^{-2 x} \mathrm{~d} x$ or $-\frac{1}{2} x \mathrm{e}^{-2 x}+\frac{1}{2} \int \mathrm{e}^{-2 x} \mathrm{~d} x$	A1	SOI (might have taken out factor of 4)
	Complete integration and obtain $-2 x \mathrm{e}^{-2 x}-\mathrm{e}^{-2 x}$	A1	
	Evaluate a constant or use $x=0$ and $y=1$ as limits in a solution containing terms of the form $\frac{p}{y}, q x \mathrm{e}^{-2 x}, r \mathrm{e}^{-2 x}$, or equivalent.	M1	
	Obtain $y=\frac{\mathrm{e}^{2 x}}{2 x+1}$, or equivalent expression for y	A1	ISW
		7	

PUBLISHED

Question	Answer	Marks	Guidance
8(a)	Expand the square and equate to 1	B1	
	Use correct double angle formula	M1	Need to see $\frac{4}{2}$ or $\sin 2 \theta=2 \sin \theta \cos \theta$ stated.
	Obtain $\cos ^{4} \theta+\sin ^{4} \theta=1-\frac{1}{2} \sin ^{2} 2 \theta$	A1	Obtain the given result correctly.
		3	
8(b)	Use the identity and carry out a method for finding a root	M1	$\left(1-\frac{1}{2} \sin ^{2} 2 \theta=\frac{5}{9}\right)$
	Obtain answer 35.3°	A1	Must be correct if overspecified: 35.264...
	Obtain a second answer, e.g. $54.7{ }^{\circ}$	A1 FT	$\text { [e.g } 90^{\circ}-\text { their } 35.3^{\circ} \text {] }$ Do not FT if mixing degrees and radians.
	Obtain the remaining answers, e.g. 144.7° and 125.3° and no others in the given interval	A1 FT	$\text { [e.g. } 180^{\circ}-. . \text { and } 180^{\circ}-. . \text {] }$ Ignore answers outside the given interval. Treat answers in radians as a misread. $(0.615,0.955,2.19,2.53)$ Do not FT if mixing degrees and radians.
		4	

Question	Answer	Marks	Guidance
9(a)	State correct derivative of $y \mathrm{e}^{2 x}$ with respect to x	B1	$2 y \mathrm{e}^{2 x}+\mathrm{e}^{2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
	State correct derivative of $y^{2} \mathrm{e}^{x}$ with respect to x	B1	$2 y \mathrm{e}^{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2} \mathrm{e}^{x}$
	Equate attempted derivative of the LHS to zero and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1	
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y \mathrm{e}^{x}-y^{2}}{2 y-\mathrm{e}^{x}}$	A1	Obtain the given answer correctly. Condone multiplication by $\frac{-1}{-1}$ and cancelling of e^{x} without comment.
	Alternative method for Question 9(a)		
	Rearrange as $y=\frac{2}{\mathrm{e}^{2 x}-y \mathrm{e}^{x}} \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{2 x}-y \mathrm{e}^{x}\right)=2 \mathrm{e}^{2 x}-y \mathrm{e}^{x}-\mathrm{e}^{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}$	B1	Other rearrangements are possible e.g. $y=2 \mathrm{e}^{-2 x}+y^{2} \mathrm{e}^{-x} \quad \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y^{2} \mathrm{e}^{-x}\right)=2 y \mathrm{e}^{-x} \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2} \mathrm{e}^{-x}$
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2}{\left(\mathrm{e}^{2 x}-y \mathrm{e}^{x}\right)^{2}} \times\left(2 \mathrm{e}^{2 x}-y \mathrm{e}^{x}-\mathrm{e}^{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)$	B1	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-4 e^{-x}+2 y \mathrm{e}^{-x} \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2} \mathrm{e}^{-x}$
	Solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1	
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y \mathrm{e}^{x}-y^{2}}{2 y-\mathrm{e}^{x}}$	A1	Obtain the given answer correctly.
		4	

Question	Answer	Marks	Guidance
$9(\mathrm{~b})$	Equate denominator to zero and substitute for y or for e^{x} in the equation of the curve	$*$ M1	
	Obtain equation of the form $a \mathrm{e}^{3 x}=b$ or $c y^{3}=d$	DM1	$\left(\mathrm{e}^{3 x}=8, y^{3}=1\right)$ SOI
	Obtain $x=\ln 2$	A1	Accept $\frac{1}{3} \ln 8 \quad$ ISW
	Obtain $y=1$	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
10(a)	Obtain direction vector $-\mathbf{i}+\mathbf{j}+2 \mathbf{k}$, or equivalent	B1	Accept answers as column vectors throughout.
	Use a correct method to form a vector equation	M1	
	State answer $\mathbf{r}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}+\lambda(-\mathbf{i}+\mathbf{j}+2 \mathbf{k})$, or equivalent correct form	A1	e.g. $\mathbf{r}=\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -1 \\ -2\end{array}\right)$ Allow $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ for \mathbf{r}.
		3	
10(b)	Use a correct method to find the position vector of C	M1	e.g. $\mathbf{O C}=\mathbf{O A}+\mathbf{A C}=\left(\begin{array}{c}1-3 \\ 2+3 \\ -1+6\end{array}\right)$
	Obtain answer $-2 \mathbf{i}+5 \mathbf{j}+5 \mathbf{k}$, or equivalent	A1	Accept as coordinates.
		2	

PUBLISHED

Question	Answer	Marks	Guidance
10(c)	State $\overrightarrow{O P}$ in component form	B1 FT	
	Form an equation in λ by equating the modulus of $O P$ to $\sqrt{14}$, or equivalent	M1	
	Simplify and obtain $3 \lambda^{2}-\lambda-4=0$, or equivalent	A1	$3 \lambda^{2}+\lambda-4=0$ if using $\mathbf{i}-\mathbf{j}-2 \mathbf{k}$ in (a). $3 \mu^{2}+5 \mu-2=0$ if using $-\mathbf{i}+\mathbf{j}+2 \mathbf{k}$ in (a) and $O B$.
	Solve a 3-term quadratic and find a position vector	M1	$\left(\lambda=-1, \frac{4}{3} \text { or } \lambda=1,-\frac{4}{3} \text { or } \mu=\frac{1}{3},-2 \text { or } \mu=-\frac{1}{3}, 2\right)$
	Obtain answers $2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ and $-\frac{1}{3} \mathbf{i}+\frac{10}{3} \mathbf{j}+\frac{5}{3} \mathbf{k}$, or equivalent	A1	Accept as coordinates.
		5	

Question	Answer	Marks	Guidance
11 (a)	Use chain rule	M1	Allow if not starting with the correct index.
	Obtain correct derivative in any form	A1	e.g. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sec ^{2} x}{2 \sqrt{\tan x}}$
	Use correct Pythagoras to obtain correct derivative in terms of $\tan x$	A1	e.g. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1+\tan ^{2} x}{2 \sqrt{\tan x}}$
	Use a correct derivative to obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ when $x=\frac{1}{4} \pi$	B1	Confirm the given statement from correct work. Should see at least $\frac{2}{2}=1$.
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
11(b)	Equate answer to part (a) to 1 and obtain a quartic equation in t or $\tan x$	*M1	At least as far as $\left(1+\tan ^{2} x\right)^{2}=4 \tan x$.
	Obtain correct answer, i.e. $t^{4}+2 t^{2}-4 t+1=0$	A1	Or equivalent horizontal form.
	Commence division by $t-1$	DM1	As far as $t^{3}+t^{2}+\ldots$ by long division or inspection. Allow verification by multiplying given answer by $t-1$.
	Obtain the given answer	A1	
		4	
11(c)	Use the iterative process correctly with the given formula at least once	M1	Obtain one value and use that to obtain the next. Must be working in radians.
	Obtain final answer $a=0.29$	A1	
	Show sufficient iterations to 4 d.p. to justify 0.29 to 2 d.p., or show there is a sign change in $(0.285,0.295)$	A1	$\begin{aligned} & \text { e.g. } 0.3,0.2854,0.2894,0.2883, \ldots . . \\ & 0.4,0.2436,0.2984,0.2841,0.2883,0.2871, \ldots \\ & 0.5,0.1776,0.3103,0.2805,0.2893,0.2868, \ldots \end{aligned}$
		3	

Cambridge International AS \& A Level

MATHEMATICS
 9709/33
 Paper 3 Pure Mathematics 3
 October/November 2021
 MARK SCHEME

Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	Commence division and reach partial quotient of the form $2 x^{2}+k x$	M1	
	Obtain quotient $2 x^{2}+2 x-2$	A1	
	Obtain remainder $-6 x+5$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$2(\mathrm{a})$	Show a recognizable sketch graph of $y=\|2 x-3\|$	B1	
		1	

Question	Answer	Marks	Guidance
2(b)	Find x-coordinate of intersection with $y=3 x+2$	M1	
	Obtain $x=\frac{1}{5}$	A1	
	State final answer $x>\frac{1}{5}$ only	A1	
	Alternative method for Question 2(b)		
	Solve the linear inequality $3-2 x<3 x+2$, or corresponding equation	M1	
	Obtain critical value $x=\frac{1}{5}$	A1	
	State final answer $x>\frac{1}{5}$ only	A1	
	Alternative method for Question 2(b)		
	Solve the quadratic inequality $(2 x-3)^{2}<(3 x+2)^{2}$, or corresponding equation	M1	
	Obtain critical value $x=\frac{1}{5}$	A1	
	State final answer $x>\frac{1}{5}$ only	A1	
		3	

Question	Answer	Marks	Guidance
3	Use laws of indices correctly and solve for 4^{x}	M1	A1
	Obtain correct solution in any form, e.g. $4^{x}=\frac{256}{15}$	M1	
	Use a correct method for solving an equation of the form $4^{x}=a$, where $a>0$	A1	
	Obtain answer 2.047	4	

Question	Answer	Marks	Guidance
4	Commence integration and reach $a x \cos \frac{1}{2} x+b \int \cos \frac{1}{2} x \mathrm{~d} x$	$*$ M1	
	Obtain $-2 x \cos \frac{1}{2} x+2 \int \cos \frac{1}{2} x \mathrm{~d} x$	A1	OE
	Complete integration obtaining $-2 x \cos \frac{1}{2} x+4 \sin \frac{1}{2} x$	A1	OE
	Use limits correctly, having integrated twice	DM1	
	Obtain answer $2+\frac{\sqrt{3}}{3} \pi$, or exact equivalent		$\mathbf{5}$

Question	Answer	Marks	Guidance
5	Use double angle formula and obtain an equation in $\sin \theta$	M1	
	Reduce to $6 \sin ^{2} \theta+\sin \theta-5=0$, or 3-term equivalent	A1	M1
	Solve a 3-term quadratic in $\sin \theta$ and calculate θ	A1	
	Obtain answer, e.g. 56.4°	A1	Ignore answers outside the interval. Treat answers in radians as a misread.
	Obtain second and third answers, e.g. 123.6° and 270° and no others in the given interval	$\mathbf{5}$	

Question	Answer	Marks	Guidance
6(a)	Use $\cos (A-B)$ formula and obtain an expression in terms of $\sin x$ and $\cos x$	M1	
	Collect terms and reach $2 \cos x+\sqrt{3} \sin x$	A1	
	State $R=\sqrt{7}$	A1	
	Use trig formula to find α	M1	
	Obtain $\alpha=40.89^{\circ}$	A1	
		$\mathbf{5}$	
6(b)	Use correct method to find x	M1	
	Obtain answer $x=220.9^{\circ}$	A1	

Question	Answer	Marks	Guidance
7(a)	Use chain rule to differentiate LHS	*M1	
	Obtain $\frac{1}{x+y}\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)$	A1	
	Equate derivative of LHS to $1-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}$ and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$	DM1	
	Obtain the given answer correctly	A1	
		4	
7(b)	State $x+y=1$	B1	
	Obtain or imply $x-2 y=0$	B1	
	Obtain coordinates $x=\frac{2}{3}$ and $y=\frac{1}{3}$	B1	
		3	

Question	Answer	Marks	Guidance
$8(\mathrm{a})$	State $\overrightarrow{O M}=4 \mathbf{i}+2 \mathbf{j}$	$\mathbf{B 1}$	
	Use a correct method to find $\overrightarrow{O N}$	$\mathbf{M 1}$	
	Obtain answer $3 \mathbf{j}+\mathbf{k}$	$\mathbf{A 1}$	
	Use a correct method to find a line equation for $M N$	$\mathbf{M 1}$	
	Obtain answer $\mathbf{r}=3 \mathbf{j}+\mathbf{k}+\lambda(4 \mathbf{i}-\mathbf{j}-\mathbf{k})$, or equivalent	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
8(b)	Taking a general point P on $M N$, form an equation in λ by either equating a relevant scalar product to zero or equating the derivative of $\overrightarrow{O P}$ to zero or using Pythagoras in triangle $O P M$ or $O P N$	M1	
	Obtain $\lambda=\frac{2}{9}$	A1	OE
	Use correct method to find $O P$	M1	
	Obtain the given answer correctly	A1	
	Alternative method to Question 8(b)		
	Use a scalar product to find the projection of $O M$ (or $O N$) on $M N$	M1	
	Obtain answer $\frac{14}{\sqrt{18}}\left(\right.$ or $\left.\frac{4}{\sqrt{18}}\right)$	A1	
	Use Pythagoras to obtain the perpendicular	M1	
	Obtain the given answer correctly	A1	
		4	

Question	Answer	Marks	Guidance
9(a)	Use quotient or product rule	M1	
	Obtain correct derivative in any form	A1	
	Equate derivative to zero and solve for x	M1	
	Obtain answer $x=3$	A1	
		4	
9(b)	State $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}}$, or $\mathrm{d} x=2 \sqrt{x} \mathrm{~d} u$, or $2 u \mathrm{~d} u=\mathrm{d} x$	B1	
	Substitute and obtain integrand $\frac{2}{9-u^{2}}$	B1	
	Use given formula for the integral or integrate relevant partial fractions	M1	
	Obtain integral $\frac{1}{3} \ln \left(\frac{3+u}{3-u}\right)$	A1	OE
	Use limits $u=0$ and $u=2$ correctly	M1	
	Obtain the given answer correctly	A1	
		6	

Question	Answer	Marks	Guidance
10(a)	State or imply equation of the form $\frac{\mathrm{d} x}{\mathrm{~d} t}=k \frac{x}{20-x}$	M1	
	Obtain $k=19$	A1	AG
		2	
10(b)	Separate variables and integrate at least one side	M1	
	Obtain terms $20 \ln x-x$ and 19t, or equivalent	A1 A1	
	Evaluate a constant or use $t=0$ and $x=1$ as limits in a solution containing terms $a \ln x$ and $b t$	M1	
	Substitute $t=1$ and rearrange the equation in the given form	A1	AG
		5	
10(c)	Use $x_{n+1}=\mathrm{e}^{0.9+0.05 x_{n}}$ correctly at least once	M1	
	Obtain final answer $x=2.83$	A1	
	Show sufficient iterations to 4 decimal places to justify 2.83 to 2 d.p. or show there is a sign change in the interval $(2.825,2.835)$	A1	
		3	
10(d)	Set $x=20$ and obtain answer $t=2.15$	B1	
		1	

Question	Answer	Marks	Guidance
11(a)	State or imply $r=2$	B1	
	State or imply $\theta=\frac{5}{6} \pi$	B1	
		2	
11(b)	Use a correct method for finding the modulus or argument of u^{6}	M1	
	Show correctly that u^{6} is real and has value -64	A1	
		2	
11(c)(i)	Show half lines from the point representing $-\sqrt{3}+\mathrm{i}$	B1	
	Show correct half lines	B1	
	Show the line $x=2$ in the first quadrant	B1	
	Shade the correct region	B1	
		4	
11(c)(ii)	Carry out a correct method to find the greatest value of $\|z\|$	M1	
	Obtain answer 5.14	A1	
		2	

